Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 549
Filter
1.
BMJ Open Respir Res ; 11(1)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39117397

ABSTRACT

INTRODUCTION: This meta-analysis aims to evaluate the agreement and correlation between phase-resolved functional lung MRI (PREFUL MRI) and dynamic contrast-enhanced (DCE) MRI in evaluating perfusion defect percentage (QDP), as well as the agreement between PREFUL MRI and 129Xe MRI in assessing ventilation defect percentage (VDP). METHOD: A systematic search was conducted in the Medline, Embase and Cochrane Library databases to identify relevant studies comparing QDP and VDP measured by DCE MRI and 129Xe MRI compared with PREFUL MRI. Meta-analytical techniques were applied to calculate the pooled weighted bias, limits of agreement (LOA) and correlation coefficient. The publication bias was assessed using Egger's regression test, while heterogeneity was assessed using Cochran's Q test and Higgins I2 statistic. RESULTS: A total of 399 subjects from 10 studies were enrolled. The mean difference and LOA were -2.31% (-8.01% to 3.40%) for QDP and 0.34% (-4.94% to 5.62%) for VDP. The pooled correlations (95% CI) were 0.65 (0.55 to 0.73) for QDP and 0.72 (0.61 to 0.80) for VDP. Furthermore, both QDP and VDP showed a negative correlation with forced expiratory volume in 1 s (FEV1). The pooled correlation between QDP and FEV1 was -0.51 (-0.74 to -0.18), as well as between VDP and FEV1 was -0.60 (-0.73 to -0.44). CONCLUSIONS: PREFUL MRI is a promising imaging for the assessment of lung function, as it demonstrates satisfactory deviations and LOA when compared with DEC MRI and 129Xe MRI. PROSPERO REGISTRATION NUMBER: CRD42023430847.


Subject(s)
Contrast Media , Lung , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Lung/physiopathology , Xenon Isotopes
2.
Magn Reson Med ; 92(4): 1363-1375, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38860514

ABSTRACT

PURPOSE: Hyperpolarized 129Xe MRI benefits from non-Cartesian acquisitions that sample k-space efficiently and rapidly. However, their reconstructions are complex and burdened by decay processes unique to hyperpolarized gas. Currently used gridded reconstructions are prone to artifacts caused by magnetization decay and are ill-suited for undersampling. We present a compressed sensing (CS) reconstruction approach that incorporates magnetization decay in the forward model, thereby producing images with increased sharpness and contrast, even in undersampled data. METHODS: Radio-frequency, T1, and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ decay processes were incorporated into the forward model and solved using iterative methods including CS. The decay-modeled reconstruction was validated in simulations and then tested in 2D/3D-spiral ventilation and 3D-radial gas-exchange MRI. Quantitative metrics including apparent-SNR and sharpness were compared between gridded, CS, and twofold undersampled CS reconstructions. Observations were validated in gas-exchange data collected from 15 healthy and 25 post-hematopoietic-stem-cell-transplant participants. RESULTS: CS reconstructions in simulations yielded images with threefold increases in accuracy. CS increased sharpness and contrast for ventilation in vivo imaging and showed greater accuracy for undersampled acquisitions. CS improved gas-exchange imaging, particularly in the dissolved-phase where apparent-SNR improved, and structure was made discernable. Finally, CS showed repeatability in important global gas-exchange metrics including median dissolved-gas signal ratio and median angle between real/imaginary components. CONCLUSION: A non-Cartesian CS reconstruction approach that incorporates hyperpolarized 129Xe decay processes is presented. This approach enables improved image sharpness, contrast, and overall image quality in addition to up-to threefold undersampling. This contribution benefits all hyperpolarized gas MRI through improved accuracy and decreased scan durations.


Subject(s)
Algorithms , Computer Simulation , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Xenon Isotopes , Magnetic Resonance Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Male , Signal-To-Noise Ratio , Female , Imaging, Three-Dimensional/methods , Adult , Phantoms, Imaging , Artifacts , Data Compression/methods , Reproducibility of Results , Lung/diagnostic imaging , Contrast Media/chemistry
3.
Magn Reson Med ; 92(4): 1471-1483, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38726472

ABSTRACT

PURPOSE: To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers. METHODS: Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed. RESULTS: Data from 26 males and 36 females with a median age of 43 y (range: 20-69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = -0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = -0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively. CONCLUSION: Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume.


Subject(s)
Lung , Magnetic Resonance Imaging , Xenon Isotopes , Humans , Male , Female , Middle Aged , Adult , Magnetic Resonance Imaging/methods , Aged , Lung/diagnostic imaging , Young Adult , Pulmonary Gas Exchange , Sex Factors , Age Factors , Lung Volume Measurements , Erythrocytes
4.
Anal Chem ; 96(25): 10152-10160, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38818902

ABSTRACT

Assessing the effectiveness of nanomedicines involves evaluating the drug content at the target site. Currently, most research focuses on monitoring the signal responses from loaded drugs, neglecting the changes caused by the nanohosts. Here, we propose a strategy to quantitatively evaluate the content of loaded drugs by detecting the signal variations resulting from the alterations in the microenvironment of the nanohosts. Specifically, hyperpolarized (HP) 129Xe atoms are employed as probes to sense the nanohosts' environment and generate a specific magnetic resonance (MR) signal that indicates their accessibility. The introduction of drugs reduces the available space in the nanohosts, leading to a crowded microenvironment that hinders the access of the 129Xe atoms. By employing 129Xe atoms as a signal source to detect the alterations in the microenvironment, we constructed a three-dimensional (3D) map that indicated the concentration of the nanohosts and established a linear relationship to quantitatively measure the drug content within the nanohosts based on the corresponding MR signals. Using the developed strategy, we successfully quantified the uptake of the nanohosts and drugs in living cells through HP 129Xe MR imaging. Overall, the proposed HP 129Xe atom-sensing approach can be used to monitor alterations in the microenvironment of nanohosts induced by loaded drugs and provides a new perspective for the quantitative evaluation of drug presence in various nanomedicines.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Humans , Nanoparticles/chemistry
5.
Magn Reson Med ; 92(3): 956-966, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38770624

ABSTRACT

PURPOSE: To demonstrate the feasibility of zigzag sampling for 3D rapid hyperpolarized 129Xe ventilation MRI in human. METHODS: Zigzag sampling in one direction was combined with gradient-recalled echo sequence (GRE-zigzag-Y) to acquire hyperpolarized 129Xe ventilation images. Image quality was compared with a balanced SSFP (bSSFP) sequence with the same spatial resolution for 12 healthy volunteers (HVs). For another 8 HVs and 9 discharged coronavirus disease 2019 subjects, isotropic resolution 129Xe ventilation images were acquired using zigzag sampling in two directions through GRE-zigzag-YZ. 129Xe ventilation defect percent (VDP) was quantified for GRE-zigzag-YZ and bSSFP acquisitions. Relationships and agreement between these VDP measurements were evaluated using Pearson correlation coefficient (r) and Bland-Altman analysis. RESULTS: For 12 HVs, GRE-zigzag-Y and bSSFP required 2.2 s and 10.5 s, respectively, to acquire 129Xe images with a spatial resolution of 3.96 × 3.96 × 10.5 mm3. Structural similarity index, mean absolute error, and Dice similarity coefficient between the two sets of images and ventilated lung regions were 0.85 ± 0.03, 0.0015 ± 0.0001, and 0.91 ± 0.02, respectively. For another 8 HVs and 9 coronavirus disease 2019 subjects, 129Xe images with a nominal spatial resolution of 2.5 × 2.5 × 2.5 mm3 were acquired within 5.5 s per subject using GRE-zigzag-YZ. VDP provided by GRE-zigzag-YZ was strongly correlated (R2 = 0.93, p < 0.0001) with that generated by bSSFP with minimal biases (bias = -0.005%, 95% limit-of-agreement = [-0.414%, 0.424%]). CONCLUSION: Zigzag sampling combined with GRE sequence provides a way for rapid 129Xe ventilation imaging.


Subject(s)
COVID-19 , Lung , Magnetic Resonance Imaging , SARS-CoV-2 , Xenon Isotopes , Humans , COVID-19/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Female , Adult , Lung/diagnostic imaging , Middle Aged , Imaging, Three-Dimensional/methods , Feasibility Studies
6.
J Vis Exp ; (206)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682932

ABSTRACT

Hyperpolarized 129Xe gas MRI is an emerging technique to evaluate and measure regional lung function including pulmonary gas distribution and gas exchange. Chest computed tomography (CT) still remains the clinical gold standard for imaging of the lungs, though, in part due to the rapid CT protocols that acquire high-resolution images in seconds and the widespread availability of CT scanners. Quantitative approaches have enabled the extraction of structural lung parenchymal, airway and vascular measurements from chest CT that have been evaluated in many clinical research studies. Together, CT and 129Xe MRI provide complementary information that can be used to evaluate regional lung structure and function, resulting in new insights into lung health and disease. 129Xe MR-CT image registration can be performed to measure regional lung structure-function to better understand lung disease pathophysiology, and to perform image-guided pulmonary interventions. Here, a method for 129Xe MRI-CT registration is outlined to support implementation in research or clinical settings. Registration methods and applications that have been employed to date in the literature are also summarized, and suggestions are provided for future directions that may further overcome technical challenges related to 129Xe MR-CT image registration and facilitate broader implementation of regional lung structure-function evaluation.


Subject(s)
Lung , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Lung/diagnostic imaging , Humans , Tomography, X-Ray Computed/methods , Multimodal Imaging/methods , Animals
7.
Angew Chem Int Ed Engl ; 63(22): e202403771, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38551448

ABSTRACT

The immune checkpoint blockade strategy has improved the survival rate of late-stage lung cancer patients. However, the low immune response rate limits the immunotherapy efficiency. Here, we report a ROS-responsive Fe3O4-based nanoparticle that undergoes charge reversal and disassembly in the tumor microenvironment, enhancing the uptake of Fe3O4 by tumor cells and triggering a more severe ferroptosis. In the tumor microenvironment, the nanoparticle rapidly disassembles and releases the loaded GOx and the immune-activating peptide Tuftsin under overexpressed H2O2. GOx can consume the glucose of tumor cells and generate more H2O2, promoting the disassembly of the nanoparticle and drug release, thereby enhancing the therapeutic effect of ferroptosis. Combined with Tuftsin, it can more effectively reverse the immune-suppressive microenvironment and promote the recruitment of effector T cells in tumor tissues. Ultimately, in combination with α-PD-L1, there is significant inhibition of the growth of lung metastases. Additionally, the hyperpolarized 129Xe method has been used to evaluate the Fe3O4 nanoparticle-mediated immunotherapy, where the ventilation defects in lung metastases have been significantly improved with complete lung structure and function recovered. The ferroptosis-enhanced immunotherapy combined with non-radiation evaluation methodology paves a new way for designing novel theranostic agents for cancer therapy.


Subject(s)
Ferroptosis , Immunotherapy , Magnetic Resonance Imaging , Reactive Oxygen Species , Ferroptosis/drug effects , Humans , Reactive Oxygen Species/metabolism , Tumor Microenvironment/drug effects , Mice , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Xenon Isotopes/chemistry , Magnetite Nanoparticles/chemistry , Cell Line, Tumor
8.
Med Phys ; 51(4): 2413-2423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431967

ABSTRACT

BACKGROUND: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS: All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS: Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS: By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.


Subject(s)
Asthma , Bronchodilator Agents , Young Adult , Humans , Adult , Bronchodilator Agents/therapeutic use , Blood-Air Barrier , Lung/diagnostic imaging , Asthma/diagnostic imaging , Asthma/drug therapy , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon/therapeutic use
9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339217

ABSTRACT

Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Xenon Isotopes/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Solubility , Xenon/chemistry
10.
NMR Biomed ; 37(6): e5121, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423986

ABSTRACT

Although hyperpolarized (HP) 129Xe ventilation MRI can be carried out within a breath hold, it is still challenging for many sick patients. Compressed sensing (CS) is a viable alternative to accelerate this approach. However, undersampled images with identical sampling ratios differ from one another. Twenty subjects (n = 10 healthy and n = 10 patients with asthma) were scanned using a GE MR750 3 T scanner, acquiring fully sampled 2D multi-slice HP 129Xe lung ventilation images (10 s breath hold, 128 × 80 (FE × PE-frequency encoding × phase encoding) and 16 slices). Using fully sampled data, 500 variable-density Cartesian random undersampling patterns were generated, each at eight different sampling ratios from 10% to 80%. The parallel imaging and compressed sensing (PICS) command from BART was employed to reconstruct undersampled data. The signal to noise ratio (SNR), structural similarity index measurement (SSIM) and sidelobe to peak ratio of each were subsequently compared. There was a high degree of variation in both SNR and SSIM results from each of the 500 masks of each sampling rate. As the undersampling increases, there is more variation in the quantifying metrics, for both healthy and asthmatic individuals. Our study shows that random undersampling poses a significant challenge when applied at sampling ratios less than 60%, despite fulfilling CS's incoherency criteria. Such low sampling ratios will result in a large variety of undersampling patterns. Therefore, skipped segments of k-space cannot be allowed to happen randomly at low sampling rates. By optimizing the sampling pattern, CS will reach its full potential and be able to be applied to a highly undersampled 129Xe lung dataset.


Subject(s)
Lung , Magnetic Resonance Imaging , Signal-To-Noise Ratio , Xenon Isotopes , Humans , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Male , Female , Adult , Asthma/diagnostic imaging , Middle Aged , Data Compression
11.
Chemistry ; 30(25): e202304071, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38381807

ABSTRACT

Hyperpolarized 129Xe gas was FDA-approved as an inhalable contrast agent for magnetic resonance imaging of a wide range of pulmonary diseases in December 2022. Despite the remarkable success in clinical research settings, the widespread clinical translation of HP 129Xe gas faces two critical challenges: the high cost of the relatively low-throughput hyperpolarization equipment and the lack of 129Xe imaging capability on clinical MRI scanners, which have narrow-bandwidth electronics designed only for proton (1H) imaging. To solve this translational grand challenge of gaseous hyperpolarized MRI contrast agents, here we demonstrate the utility of batch-mode production of proton-hyperpolarized diethyl ether gas via heterogeneous pairwise addition of parahydrogen to ethyl vinyl ether. An approximately 0.1-liter bolus of hyperpolarized diethyl ether gas was produced in 1 second and injected in excised rabbit lungs. Lung ventilation imaging was performed using sub-second 2D MRI with up to 2×2 mm2 in-plane resolution using a clinical 0.35 T MRI scanner without any modifications. This feasibility demonstration paves the way for the use of inhalable diethyl ether as a gaseous contrast agent for pulmonary MRI applications using any clinical MRI scanner.


Subject(s)
Contrast Media , Lung , Magnetic Resonance Imaging , Xenon Isotopes , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Animals , Lung/diagnostic imaging , Rabbits , Xenon Isotopes/chemistry , Gases/chemistry , Ether/chemistry
12.
Magn Reson Med ; 92(3): 967-981, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38297511

ABSTRACT

PURPOSE: Hyperpolarized xenon MRI suffers from heterogeneous coil bias and magnetization decay that obscure pulmonary abnormalities. Non-physiological signal variability can be mitigated by measuring and mapping the nominal flip angle, and by rescaling the images to correct for signal bias and decay. While flip angle maps can be calculated from sequentially acquired images, scan time and breath-hold duration are doubled. Here, we exploit the low-frequency oversampling of 2D-spiral and keyhole reconstruction to measure flip angle maps from a single acquisition. METHODS: Flip angle maps were calculated from two images generated from a single dataset using keyhole reconstructions and a Bloch-equation-based model suitable for hyperpolarized substances. Artifacts resulting from acquisition and reconstruction schemes (e.g., keyhole reconstruction radius, slice-selection profile, spiral-ordering, and oversampling) were assessed using point-spread functions. Simulated flip angle maps generated using keyhole reconstruction were compared against the paired-image approach using RMS error (RMSE). Finally, feasibility was demonstrated for in vivo xenon ventilation imaging. RESULTS: Simulations demonstrated accurate flip angle maps and B1-inhomogeneity correction can be generated with only 1.25-fold central-oversampling and keyhole reconstruction radius = 5% (RMSE = 0.460°). These settings also generated accurate flip angle maps in a healthy control (RSME = 0.337°) and a person with cystic fibrosis (RMSE = 0.404°) in as little as 3.3 s. CONCLUSION: Regional lung ventilation images with reduced impact of B1-inhomogeneity can be acquired rapidly by combining 2D-spiral acquisition, Bloch-equation-based modeling, and keyhole reconstruction. This approach will be especially useful for breath-hold studies where short scan durations are necessary, such as dynamic imaging and applications in children or people with severely compromised respiratory function.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Lung , Magnetic Resonance Imaging , Xenon Isotopes , Humans , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Computer Simulation , Algorithms , Male , Female , Phantoms, Imaging , Adult , Breath Holding , Cystic Fibrosis/diagnostic imaging
13.
IEEE Trans Med Imaging ; 43(5): 1828-1840, 2024 May.
Article in English | MEDLINE | ID: mdl-38194397

ABSTRACT

Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a way to visualize the structure and function of human lung, but the long imaging time limits its broad research and clinical applications. Deep learning has demonstrated great potential for accelerating MRI by reconstructing images from undersampled data. However, most existing deep convolutional neural networks (CNN) directly apply square convolution to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. In this work, we propose an encoding enhanced (EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2 complex CNN employs convolution along either the frequency or phase-encoding direction, resembling the mechanisms of k-space sampling, to maximize the utilization of the encoding correlation and integrity within a row or column of k-space. We also employ complex convolution to learn rich representations from the complex k-space data. In addition, we develop a feature-strengthened modularized unit to further boost the reconstruction performance. Experiments demonstrate that our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI from 6-fold undersampled k-space data and provide lung function measurements with minimal biases compared with fully sampled images. These results demonstrate the effectiveness of the proposed algorithmic components and indicate that the proposed approach could be used for accelerated pulmonary MRI in research and clinical lung disease patient care.


Subject(s)
Image Processing, Computer-Assisted , Lung , Magnetic Resonance Imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Algorithms , Phantoms, Imaging , Deep Learning , Xenon Isotopes/chemistry
14.
J Thorac Imaging ; 39(2): 79-85, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37889567

ABSTRACT

PURPOSE: This study aimed to determine the association between functional impairment in small airways and symptoms of dyspnea in patients with Long-coronavirus disease (COVID), using imaging and computational modeling analysis. PATIENTS AND METHODS: Thirty-four patients with Long-COVID underwent thoracic computed tomography and hyperpolarized Xenon-129 magnetic resonance imaging (HP Xe MRI) scans. Twenty-two answered dyspnea-12 questionnaires. We used a computed tomography-based full-scale airway network (FAN) flow model to simulate pulmonary ventilation. The ventilation distribution projected on a coronal plane and the percentage lobar ventilation modeled in the FAN model were compared with the HP Xe MRI data. To assess the ventilation heterogeneity in small airways, we calculated the fractal dimensions of the impaired ventilation regions in the HP Xe MRI and FAN models. RESULTS: The ventilation distribution projected on a coronal plane showed an excellent resemblance between HP Xe MRI scans and FAN models (structure similarity index: 0.87 ± 0.04). In both the image and the model, the existence of large clustered ventilation defects was not identifiable regardless of dyspnea severity. The percentage lobar ventilation of the HP Xe MRI and FAN model showed a strong correlation (ρ = 0.63, P < 0.001). The difference in the fractal dimension of impaired ventilation zones between the low and high dyspnea-12 score groups was significant (HP Xe MRI: 1.97 [1.89 to 2.04] and 2.08 [2.06 to 2.14], P = 0.005; FAN: 2.60 [2.59 to 2.64] and 2.64 [2.63 to 2.65], P = 0.056). CONCLUSIONS: This study has identified a potential association of small airway functional impairment with breathlessness in Long-COVID, using fractal analysis of HP Xe MRI scans and FAN models.


Subject(s)
Post-Acute COVID-19 Syndrome , Xenon Isotopes , Humans , Lung/diagnostic imaging , Lung/pathology , Respiration , Magnetic Resonance Imaging/methods , Dyspnea/diagnostic imaging
15.
Acad Radiol ; 31(4): 1666-1675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37977888

ABSTRACT

RATIONALE AND OBJECTIVES: The current clinical standard for functional imaging of patients with lung ailments is nuclear medicine scintigraphy and Single Photon Emission Computed Tomography (SPECT) which detect the gamma decay of inhaled radioactive tracers. Hyperpolarized (HP) Xenon-129 MRI (XeMRI) of the lungs has recently been FDA approved and provides similar functional images of the lungs with higher spatial resolution than scintigraphy and SPECT. Here we compare Technetium-99m (99mTc) diethylene-triamine-pentaacetate scintigraphy and SPECT with HP XeMRI in healthy controls, asthma, and chronic obstructive pulmonary disorder (COPD) patients. MATERIALS AND METHODS: 59 subjects, healthy, with asthma, and with COPD, underwent 99mTc scintigraphy/SPECT, standard spirometry, and HP XeMRI. XeMRI and SPECT images were registered for direct voxel-wise signal comparisons. Images were also compared using ventilation defect percentage (VDP), and a standard 6-compartment method. VDP calculated from XeMRI and SPECT images was compared to spirometry. RESULTS: Median Pearson correlation coefficient for voxel-wise signal comparison was 0.698 (0.613-0.782) between scintigraphy and XeMRI and 0.398 (0.286-0.502) between SPECT and XeMRI. Correlation between VDP measures was r = 0.853, p < 0.05. VDP separated asthma and COPD from the control group and was significantly correlated with FEV1, FEV1/FVC, and FEF 25-75. CONCLUSION: HP XeMRI provides equivalent information to 99mTc SPECT and standard spirometry measures. Additionally, XeMRI is non-invasive, hence it could be used for longitudinal studies for evaluating emerging treatment for lung ailments.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Xenon Isotopes , Humans , Respiratory Function Tests , Lung/diagnostic imaging , Tomography, Emission-Computed, Single-Photon , Magnetic Resonance Imaging/methods , Asthma/diagnostic imaging
16.
NMR Biomed ; 37(4): e5078, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38086710

ABSTRACT

Prognosticating acute lung injury (ALI) is challenging, in part because of a lack of sensitive biomarkers. Hyperpolarized gas magnetic resonance (MR) has unique advantages in pulmonary function measurement and can provide promising biomarkers for the assessment of lung injuries. Herein, we employ hyperpolarized 129 Xe MRI and generate a number of imaging biomarkers to detect the pulmonary physiological and morphological changes during the progression of ALI in an animal model. We find the measured ratio of 129 Xe in red blood cells to interstitial tissue/plasma (RBC/TP) is significantly lower in the ALI group on the second (0.32 ± 0.03, p = 0.004), seventh (0.23 ± 0.03, p < 0.001), and 14th (0.29 ± 0.04, p = 0.001) day after lipopolysaccharide treatment compared with that in the control group (0.41 ± 0.04). In addition, significant differences are also observed for RBC/TP measurements between the second and seventh day (p = 0.001) and between the seventh and 14th day (p = 0.018) in the ALI group after treatment. Besides RBC/TP, significant differences are also observed in the measured exchange time constant (T) on the second (p = 0.038) and seventh day (p = 0.009) and in the measured apparent diffusion coefficient (ADC) and alveolar surface-to-volume ratio (SVR) on the 14th day (ADC: p = 0.009 and SVR: p = 0.019) after treatment in the ALI group compared with that in the control group. These findings indicate that the parameters measured with 129 Xe MR can detect the dynamic changes in pulmonary structure and function in an ALI animal model.


Subject(s)
Acute Lung Injury , Magnetic Resonance Imaging , Animals , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Lung/pathology , Acute Lung Injury/diagnostic imaging , Acute Lung Injury/pathology , Xenon Isotopes/chemistry , Biomarkers
17.
Magn Reson Med ; 91(4): 1541-1555, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38084439

ABSTRACT

PURPOSE: The interaction between 129 Xe atoms and pulmonary capillary red blood cells provides cardiogenic signal oscillations that display sensitivity to precapillary and postcapillary pulmonary hypertension. Recently, such oscillations have been spatially mapped, but little is known about optimal reconstruction or sensitivity to artifacts. In this study, we use digital phantom simulations to specifically optimize keyhole reconstruction for oscillation imaging. We then use this optimized method to re-establish healthy reference values and quantitatively evaluate microvascular flow changes in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after pulmonary thromboendarterectomy (PTE). METHODS: A six-zone digital lung phantom was designed to investigate the effects of radial views, key radius, and SNR. One-point Dixon 129 Xe gas exchange MRI images were acquired in a healthy cohort (n = 17) to generate a reference distribution and thresholds for mapping red blood cell oscillations. These thresholds were applied to 10 CTEPH participants, with 6 rescanned following PTE. RESULTS: For undersampled acquisitions, a key radius of 0.14 k max $$ 0.14{k}_{\mathrm{max}} $$ was found to optimally resolve oscillation defects while minimizing excessive heterogeneity. CTEPH participants at baseline showed higher oscillation defect + low (32 ± 14%) compared with healthy volunteers (18 ± 12%, p < 0.001). For those scanned both before and after PTE, oscillation defect + low decreased from 37 ± 13% to 23 ± 14% (p = 0.03). CONCLUSIONS: Digital phantom simulations have informed an optimized keyhole reconstruction technique for gas exchange images acquired with standard 1-point Dixon parameters. Our proposed methodology enables more robust quantitative mapping of cardiogenic oscillations, potentially facilitating effective regional quantification of microvascular flow impairment in patients with pulmonary vascular diseases such as CTEPH.


Subject(s)
Hypertension, Pulmonary , Lung Diseases , Humans , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Erythrocytes , Xenon Isotopes
18.
J Magn Reson Imaging ; 59(4): 1120-1134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37548112

ABSTRACT

The respiratory consequences of acute COVID-19 infection and related symptoms tend to resolve 4 weeks post-infection. However, for some patients, new, recurrent, or persisting symptoms remain beyond the acute phase and persist for months, post-infection. The symptoms that remain have been referred to as long-COVID. A number of research sites employed 129 Xe magnetic resonance imaging (MRI) during the pandemic and evaluated patients post-infection, months after hospitalization or home-based care as a way to better understand the consequences of infection on 129 Xe MR gas-exchange and ventilation imaging. A systematic review and comprehensive search were employed using MEDLINE via PubMed (April 2023) using the National Library of Medicine's Medical Subject Headings and key words: post-COVID-19, MRI, 129 Xe, long-COVID, COVID pneumonia, and post-acute COVID-19 syndrome. Fifteen peer-reviewed manuscripts were identified including four editorials, a single letter to the editor, one review article, and nine original research manuscripts (2020-2023). MRI and MR spectroscopy results are summarized from these prospective, controlled studies, which involved small sample sizes ranging from 9 to 76 participants. Key findings included: 1) 129 Xe MRI gas-exchange and ventilation abnormalities, 3 months post-COVID-19 infection, and 2) a combination of MRI gas-exchange and ventilation abnormalities alongside persistent symptoms in patients hospitalized and not hospitalized for COVID-19, 1-year post-infection. The persistence of respiratory symptoms and 129 Xe MRI abnormalities in the context of normal or nearly normal pulmonary function test results and chest computed tomography (CT) was consistent. Longitudinal improvements were observed in long-term follow-up of long-COVID patients but mean 129 Xe gas-exchange, ventilation heterogeneity values and symptoms remained abnormal, 1-year post-infection. Pulmonary functional MRI using inhaled hyperpolarized 129 Xe gas has played a role in detecting gas-exchange and ventilation abnormalities providing complementary information that may help develop our understanding of the root causes of long-COVID. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 5.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Xenon Isotopes , Prospective Studies , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods
19.
ACS Sens ; 8(12): 4707-4715, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38064687

ABSTRACT

Hyperpolarized (HP) xenon-129 (129Xe) magnetic resonance imaging (MRI) has the potential to be used as a molecular imaging modality. For this purpose, numerous supramolecular cages have been developed and evaluated in the past. Herein, we report a novel and unique macrocycle that can be successfully utilized for xenon MRI, the resorcinarene trimer methanesulfonate (R3-Noria-MeSO3H). This molecule is capable of two different contrast mechanisms for xenon-MRI, resulting from an increase in the effective spin-spin relaxation and hyperpolarized chemical exchange saturation transfer (HyperCEST). We have demonstrated a superior negative contrast caused by R3-Noria-MeSO3H on HP 129Xe MRI at 3.0 T as well as HyperCEST imaging of the studied macrocycle. Additionally, we have found that the complex aggregation behaviors of R3-Noria-methanesulfonate and its impact on xenon-129 relaxivity are an area for future study.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Magnetic Resonance Imaging/methods , Xenon Isotopes/chemistry , Xenon/chemistry , Contrast Media/chemistry , Mesylates
20.
J Vis Exp ; (201)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38078603

ABSTRACT

Hyperpolarized 129Xe MRI comprises a unique array of structural and functional lung imaging techniques. Technique standardization across sites is increasingly important given the recent FDA approval of 129Xe as an MR contrast agent and as interest in 129Xe MRI increases among research and clinical institutions. Members of the 129Xe MRI Clinical Trials Consortium (Xe MRI CTC) have agreed upon best practices for each of the key aspects of the 129Xe MRI workflow, and these recommendations are summarized in a recent publication. This work provides practical information to develop an end-to-end workflow for collecting 129Xe MR images of lung ventilation according to the Xe MRI CTC recommendations. Preparation and administration of 129Xe for MR studies will be discussed and demonstrated, with specific topics including choice of appropriate gas volumes for entire studies and for individual MR scans, preparation and delivery of individual 129Xe doses, and best practices for monitoring subject safety and 129Xe tolerability during studies. Key MR technical considerations will also be covered, including pulse sequence types and optimized parameters, calibration of 129Xe flip angle and center frequency, and 129Xe MRI ventilation image analysis.


Subject(s)
Lung , Xenon Isotopes , Lung/diagnostic imaging , Lung/pathology , Magnetic Resonance Imaging/methods , Xenon
SELECTION OF CITATIONS
SEARCH DETAIL