Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.403
Filter
1.
Nat Commun ; 15(1): 6594, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097618

ABSTRACT

Neurons coordinate inter-tissue protein homeostasis to systemically manage cytotoxic stress. In response to neuronal mitochondrial stress, specific neuronal signals coordinate the systemic mitochondrial unfolded protein response (UPRmt) to promote organismal survival. Yet, whether chemical neurotransmitters are sufficient to control the UPRmt in physiological conditions is not well understood. Here, we show that gamma-aminobutyric acid (GABA) inhibits, and acetylcholine (ACh) promotes the UPRmt in the Caenorhabditis elegans intestine. GABA controls the UPRmt by regulating extra-synaptic ACh release through metabotropic GABAB receptors GBB-1/2. We find that elevated ACh levels in animals that are GABA-deficient or lack ACh-degradative enzymes induce the UPRmt through ACR-11, an intestinal nicotinic α7 receptor. This neuro-intestinal circuit is critical for non-autonomously regulating organismal survival of oxidative stress. These findings establish chemical neurotransmission as a crucial regulatory layer for nervous system control of systemic protein homeostasis and stress responses.


Subject(s)
Acetylcholine , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Mitochondria , Oxidative Stress , Signal Transduction , Unfolded Protein Response , gamma-Aminobutyric Acid , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Acetylcholine/metabolism , Mitochondria/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Intestines/physiology , Stress, Physiological , Neurons/metabolism , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Synaptic Transmission/physiology
2.
Cell Mol Life Sci ; 81(1): 332, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110172

ABSTRACT

Drug modulation of the α7 acetylcholine receptor has emerged as a therapeutic strategy for neurological, neurodegenerative, and inflammatory disorders. α7 is a homo-pentamer containing topographically distinct sites for agonists, calcium, and drug modulators with each type of site present in five copies. However, functional relationships between agonist, calcium, and drug modulator sites remain poorly understood. To investigate these relationships, we manipulated the number of agonist binding sites, and monitored potentiation of ACh-elicited single-channel currents through α7 receptors by PNU-120596 (PNU) both in the presence and absence of calcium. When ACh is present alone, it elicits brief, sub-millisecond channel openings, however when ACh is present with PNU it elicits long clusters of potentiated openings. In receptors harboring five agonist binding sites, PNU potentiates regardless of the presence or absence of calcium, whereas in receptors harboring one agonist binding site, PNU potentiates in the presence but not the absence of calcium. By varying the numbers of agonist and calcium binding sites we show that PNU potentiation of α7 depends on a balance between agonist occupancy of the orthosteric sites and calcium occupancy of the allosteric sites. The findings suggest that in the local cellular environment, fluctuations in the concentrations of neurotransmitter and calcium may alter this balance and modulate the ability of PNU to potentiate α7.


Subject(s)
Calcium , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Binding Sites , Calcium/metabolism , Humans , Animals , Phenylurea Compounds/pharmacology , Phenylurea Compounds/metabolism , Acetylcholine/metabolism , Acetylcholine/pharmacology , HEK293 Cells , Xenopus laevis , Nicotinic Agonists/pharmacology , Nicotinic Agonists/metabolism , Isoxazoles
3.
J Med Virol ; 96(7): e29768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978388

ABSTRACT

The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.


Subject(s)
Lung , Orthomyxoviridae Infections , Signal Transduction , Vagus Nerve , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Vagus Nerve/metabolism , Mice , Orthomyxoviridae Infections/virology , Lung/virology , Lung/pathology , Mice, Inbred C57BL , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Humans , Mice, Knockout
4.
J Membr Biol ; 257(3-4): 245-256, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967800

ABSTRACT

The human neuronal nicotinic acetylcholine receptor α7 (nAChR) is an important target implicated in diseases like Alzheimer's or Parkinson's, as well as a validated target for drug discovery. For α7 nAChR model systems, correct folding and ion influx functions are essential. Two chaperones, resistance to inhibitors of cholinesterase 3 (RIC3) and novel nAChR regulator (NACHO), enhance the assembly and function of α7 nAChR. This study investigates the consequence of NACHO absence on α7 nAChR expression and function. Therefore, the sequences of human α7 nAChR and human RIC3 were transduced in Chinese hamster ovary (CHO) cells. Protein expression and function of α7 nAChR were confirmed by Western blot and voltage clamp, respectively. Cellular viability was assessed by cell proliferation and lactate dehydrogenase assays. Intracellular and extracellular expression were determined by in/on-cell Western, compared with another nAChR subtype by novel cluster fluorescence-linked immunosorbent assay, and N-glycosylation efficiency was assessed by glycosylation digest. The transgene CHO cell line showed expected protein expression and function for α7 nAChR and cell viability was barely influenced by overexpression. While intracellular levels of α7 nAChR were as anticipated, plasma membrane insertion was low. The glycosylation digest revealed no appreciable N-glycosylation product. This study demonstrates a stable and functional cell line expressing α7 nAChR, whose protein expression, function, and viability are not affected by the absence of NACHO. The reduced plasma membrane insertion of α7 nAChR, combined with incorrect matured N-glycosylation at the Golgi apparatus, suggests a loss of recognition signal for lectin sorting.


Subject(s)
Cricetulus , alpha7 Nicotinic Acetylcholine Receptor , Animals , CHO Cells , Glycosylation , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Humans , Cricetinae , Transgenes , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Cell Survival/genetics , Intracellular Signaling Peptides and Proteins
5.
ASN Neuro ; 16(1): 2371160, 2024.
Article in English | MEDLINE | ID: mdl-39024573

ABSTRACT

Promising new pharmacological strategies for the enhancement of cognition target either nicotinic acetylcholine receptors (nAChR) or N-methyl-D-aspartate receptors (NMDAR). There is also an increasing interest in low-dose combination therapies co-targeting the above neurotransmitter systems to reach greater efficacy over the monotreatments and to reduce possible side effects of high-dose monotreatments. In the present study, we assessed modulatory effects of the α7 nAChR-selective agonist PHA-543613 (PHA), a novel α7 nAChR positive allosteric modulator compound (CompoundX) and the NMDAR antagonist memantine on the in vivo firing activity of CA1 pyramidal neurons in the rat hippocampus. Three different test conditions were applied: spontaneous firing activity, NMDA-evoked firing activity and ACh-evoked firing activity. Results showed that high but not low doses of memantine decreased NMDA-evoked firing activity, and low doses increased the spontaneous and ACh-evoked firing activity. Systemically applied PHA robustly potentiated ACh-evoked firing activity with having no effect on NMDA-evoked activity. In addition, CompoundX increased both NMDA- and ACh-evoked firing activity, having no effects on spontaneous firing of the neurons. A combination of low doses of memantine and PHA increased firing activity in all test conditions and similar effects were observed with memantine and CompoundX but without spontaneous firing activity increasing effects. Our present results demonstrate that α7 nAChR agents beneficially interact with Alzheimer's disease medication memantine. Moreover, positive allosteric modulators potentiate memantine effects on the right time and the right place without affecting spontaneous firing activity. All these data confirm previous behavioral evidence for the viability of combination therapies for cognitive enhancement.


Subject(s)
Hippocampus , Memantine , alpha7 Nicotinic Acetylcholine Receptor , Animals , Memantine/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Hippocampus/drug effects , Male , Rats , Neurons/drug effects , Neurons/physiology , Action Potentials/drug effects , Action Potentials/physiology , Dose-Response Relationship, Drug , Cognition/drug effects , Cognition/physiology , Excitatory Amino Acid Antagonists/pharmacology , Nootropic Agents/pharmacology , Rats, Wistar , Ligands , Nicotinic Agonists/pharmacology
6.
J Ethnopharmacol ; 334: 118509, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38971346

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alpha 7 nicotinic acetylcholine receptor (α7nAChR)-mediated astrocytic activation is closely related to central sensitization of chronic migraine (CM). Xiongzhi Dilong decoction (XZDL), originated from Xiongzhi Shigao decoction of Yi-zong-jin-jian, has been confirmed to relieve CM in experiment and clinic. However, its underlying mechanism for treating CM has not been elucidated. AIM OF THE STUDY: To reveal the underlying mechanisms of XZDL to alleviate CM in vivo focusing mainly on α7nAChR-mediated astrocytic activation and central sensitization in TNC. MATERIALS AND METHODS: CM rat model was established by subcutaneous injection of nitroglycerin (NTG) recurrently, and treated with XZDL simultaneously. Migraine-like behaviors of rats (ear redness, head scratching, and cage climbing) and pain-related reactions (mechanical hind-paw withdrawal threshold) of rats were evaluated before and after NTG injection and XZDL administration at different points in time for nine days. The immunofluorescence single and double staining were applied to detect the levels of CGRP, c-Fos, GFAP and α7nAChR in NTG-induced CM rats. ELISA kits were employed to quantify levels of TNF-α, IL-1ß, and IL-6 in medulla oblongata of CM rats. The expression levels of target proteins were examined using western blotting. Finally, methyllycaconitine citrate (MLA, a specific antagonist of α7nAChR) was applied to further validate the mechanisms of XZDL in vivo. RESULTS: XZDL significantly attenuated the pain-related behaviors of the NTG-induced CM rats, manifesting as constraints of aberrant migraine-like behaviors including elongated latency of ear redness and decreased numbers of head scratching and cage climbing, and increment of mechanical withdrawal threshold. Moreover, XZDL markedly lowered levels of CGRP and c-Fos, as well as inflammatory cytokines (IL-1ß, IL-6 and TNF-α) in CM rats. Furthermore, XZDL significantly enhanced α7nAChR expression and its co-localization with GFAP, while markedly inhibited the expression of GFAP and the activation of JAK2/STAT3/NF-κB pathway in the TNC of CM rats. Finally, blocking α7nAChR with MLA reversed the effects of XZDL on astrocytic activation, central sensitization, and the pain-related behaviors in vivo. CONCLUSION: XZDL inhibited astrocytic activation and central sensitization in NTG-induced CM rats by facilitating α7nAChR expression and suppressing JAK2/STAT3/NF-κB pathway, implying that the regulation of α7nAChR-mediated astrocytic activation represents a novel mechanism of XZDL for relieving CM.


Subject(s)
Astrocytes , Drugs, Chinese Herbal , Migraine Disorders , Rats, Sprague-Dawley , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Migraine Disorders/drug therapy , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Drugs, Chinese Herbal/pharmacology , Male , Rats , Nitroglycerin/pharmacology , Disease Models, Animal , Chronic Disease
7.
Kidney Blood Press Res ; 49(1): 646-656, 2024.
Article in English | MEDLINE | ID: mdl-38955174

ABSTRACT

INTRODUCTION: Contrast nephropathy (CN) is characterized by oxidative stress, vasoconstriction, tubular toxicity, and hypoxia of the renal medulla. We aimed to test the therapeutic effects of an α7 nicotinic acetylcholine receptor (nAChR) agonist, GTS-21, in an experimental CN model. METHODS: Male Sprague-Dawley rats (n = 40) were divided into 4 groups: saline-treated control, GTS-21-treated control, contrast, and GTS-21-treated contrast groups. Starting on the 1st day, GTS-21 (4 mg/kg, intraperitoneally) or saline was administered twice a day for 3 days. CN was induced on the second day by intravenous injection of indomethacin (10 mg/kg), l-NAME (10 mg/kg), and a contrast agent with high osmolarity (6 mL/kg; Urografin 76%). At the 72nd hour, blood and kidney samples were obtained for the determination of biochemical, histological, and gene expression parameters. RESULTS: Compared to those in control rats, the elevated serum BUN level in the contrast group decreased with GTS-21 treatment, while H&E staining and TUNEL assays showed that contrast-induced renal injury was improved by GTS-21. Moreover, GTS-21 treatment in the CN also increased the antioxidant glutathione level. In the contrast group, a significant increase in IL-6 expression and a decrease in TGF-ß expression were observed; however, GTS-21 treatment decreased IL-6 expression and increased TGF-ß expression. CONCLUSION: GTS-21 significantly alleviated renal injury parameters through antioxidant, anti-inflammatory, and antiapoptotic mechanisms in the CN model.


Subject(s)
Contrast Media , Kidney Diseases , Rats, Sprague-Dawley , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Male , Rats , Contrast Media/adverse effects , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney Diseases/pathology , Disease Models, Animal , Oxidative Stress/drug effects , Nicotinic Agonists/pharmacology , Nicotinic Agonists/therapeutic use , Quinuclidines , Bridged Bicyclo Compounds, Heterocyclic
8.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3591-3599, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041131

ABSTRACT

This study investigated the immunological mechanisms of Ermiao powder in the treatment of rheumatoid arthritis rats through the alpha 7 nicotinic acetylcholine receptor(α7nAChR)-Janus kinases 2(JAK2)/signal transducer and activator of transcription 3(STAT3) signaling pathway. A total of 56 female Wistar rats were randomly divided into the normal group(HG, n=8), collagen-induced arthritis(CIA) model group(CM, n=8), vagotomy group(VA, n=8), sham group(SH, n=8), Ermiao Powder treatment model group(EM, n=8), Ermiao Powder treatment for vagotomy group(EV, n=8) and Ermiao Powder treatment for sham group(ES, n=8). Following the establishment of CIA models in all groups except the HG group, the rats underwent unilateral vagotomy and sham operation(only the vagus nerve was separated). Drug treatment was started 7 days after surgery and continued for 35 days. The body weight and joints of rats were recorded, the pathological changes of the spleen of rats were observed, the contents of interleukin-6(IL-6), interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in serum were detected by enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of α7nAChR-JAK2/STAT3 pathway core genes in spleen were detected by qRT-PCR, Western blot and immunohistochemistry. RESULTS:: showed that CM group(compared with HG group) and VA group(compared with CM group and SH group) had significantly decreased body weight(P<0.05, P<0.01), increased arthritis score(P<0.05, P<0.01), swollen ankle joints with deformity, and increased and enlarged lymph nodes in the spleen. There were also notable increases in the serum levels of IL-6, IL-1ß and TNF-α(P<0.05, P<0.01), and in the mRNA expressions of JAK2 and STAT3 in the spleen(P<0.05, P<0.01). The protein levels of phosphorylated JAK2(p-JAK2)/JAK2 and phospho-STAT3(p-STAT3)/STAT3 were significantly increased(P<0.05, P<0.01), and the number of JAK2, p-JAK2, STAT3 and p-STAT3 cells increased(P<0.05, P<0.01). EM group(compared with CM group) and ES group(compared with SH group) exhibited significantly increased body weight(P<0.01), decreased arthritis scores(P<0.05, P<0.01), reduced swelling of ankle joint, and decreased number and volume of lymph nodes in the spleen. Furthermore, serum levels of IL-6, IL-1ß, and TNF-α decreased(P<0.05, P<0.01), the mRNA expression of JAK2 and STAT3 in spleen decreased(P<0.05, P<0.01), the protein levels of p-JAK2/JAK2 and p-STAT3/STAT3 decreased(P<0.05, P<0.01), and the number of JAK2, p-JAK2, STAT3 and p-STAT3 cells decreased(P<0.05, P<0.01), whereas the mRNA and protein expressions of α7nAChR were significantly increased(P<0.01). Compared with the VA group, there was no significant differences in weight gain and arthritis scores in the EV group. The number of lymph nodes in the spleen was not significantly reduced and the volume was still large, suggesting the inflammation was not significantly improved. The serum levels of IL-6, IL-1ß and TNF-α were not significantly different, and there were no significant differences in α7nAChR, JAK2, and STAT3 mRNA expression in the spleen. The protein expression levels of p-JAK2/JAK2 and α7nAChR in spleen were lower(P<0.05, P<0.01), while p-STAT3/STAT3 protein expression was not significantly different. Besides, the two groups had no significant difference in the number of JAK2, p-JAK2, STAT3, and p-STAT3 cells. The results suggested that unilateral vagotomy promoted the increase of phosphorylated JAK2 and STAT3 expressions and exacerbated inflammation. In contrast, Ermiao Powder alleviated the inflammation in rheumatoid arthritis rats by activating the α7nAChR-mediated JAK2/STAT3 pathway through the vagus nerve, suggesting that the α7nAchR-JAK2/STAT3 pathway may be a potential target for the treatment of rheumatoid arthritis.


Subject(s)
Arthritis, Experimental , Drugs, Chinese Herbal , Janus Kinase 2 , Rats, Wistar , STAT3 Transcription Factor , Signal Transduction , alpha7 Nicotinic Acetylcholine Receptor , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Rats , Female , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Experimental/drug therapy , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Signal Transduction/drug effects , Inflammation/immunology , Inflammation/metabolism , Inflammation/drug therapy , Powders , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Humans , Interleukin-6/genetics
9.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38836815

ABSTRACT

BACKGROUND: Smoking is a risk factor for liver cirrhosis; however, the underlying mechanisms remain largely unexplored. The α7 nicotinic acetylcholine receptor (α7nAChR) has recently been detected in nonimmune cells possessing immunoregulatory functions. We aimed to verify whether nicotine promotes liver fibrosis via α7nAChR. METHODS: We used osmotic pumps to administer nicotine and carbon tetrachloride to induce liver fibrosis in wild-type and α7nAChR-deficient mice. The severity of fibrosis was evaluated using Masson trichrome staining, hydroxyproline assays, and real-time PCR for profibrotic genes. Furthermore, we evaluated the cell proliferative capacity and COL1A1 mRNA expression in human HSCs line LX-2 and primary rat HSCs treated with nicotine and an α7nAChR antagonist, methyllycaconitine citrate. RESULTS: Nicotine exacerbated carbon tetrachloride-induced liver fibrosis in mice (+42.4% in hydroxyproline assay). This effect of nicotine was abolished in α7nAChR-deficient mice, indicating nicotine promotes liver fibrosis via α7nAChR. To confirm the direct involvement of α7nAChRs in liver fibrosis, we investigated the effects of genetic suppression of α7nAChR expression on carbon tetrachloride-induced liver fibrosis without nicotine treatment. Profibrotic gene expression at 1.5 weeks was significantly suppressed in α7nAChR-deficient mice (-83.8% in Acta2, -80.6% in Col1a1, -66.8% in Tgfb1), and collagen content was decreased at 4 weeks (-22.3% in hydroxyproline assay). The in vitro analysis showed α7nAChR expression in activated but not in quiescent HSCs. Treatment of LX-2 cells with nicotine increased COL1A1 expression (+116%) and cell proliferation (+10.9%). These effects were attenuated by methyllycaconitine citrate, indicating the profibrotic effects of nicotine via α7nAChR. CONCLUSIONS: Nicotine aggravates liver fibrosis induced by other factors by activating α7nAChR on HSCs, thereby increasing their collagen-producing capacity. We suggest the profibrotic effect of nicotine is mediated through α7nAChRs.


Subject(s)
Carbon Tetrachloride , Collagen Type I, alpha 1 Chain , Collagen Type I , Hepatic Stellate Cells , Liver Cirrhosis , Nicotine , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Nicotine/adverse effects , Mice , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Humans , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain/metabolism , Rats , Male , Cell Proliferation/drug effects , Aconitine/pharmacology , Aconitine/analogs & derivatives , Cell Line , Mice, Inbred C57BL , Transforming Growth Factor beta1/metabolism , Mice, Knockout , Nicotinic Agonists/pharmacology
10.
Int. j. morphol ; 42(3): 594-600, jun. 2024. ilus
Article in English | LILACS | ID: biblio-1564636

ABSTRACT

SUMMARY: Hypoxic preconditioning is known to induce neuroprotection, but its effects and pathways in chronic brain pathology still unknown. The aim was to establish an involvement of a7 subunit of nicotinic acetylcholine receptors (a7nAchRs), and sirtuins of 1 (SIRT1) and 3 (SIRT3) types in the effects of hypoxic hypobaric preconditioning on brain damage in mice with chronic cerebral hypoperfusion caused by the left common carotid artery occlusion. The male C57/6j (C57, wild type) and a7nAchRs(-/-) mice were divided to six experimental groups (10 mice per group): sham-operated C57, C57 with chronic cerebral hypoperfusion, C57 with hypoxic hypobaric preconditioning and chronic cerebral hypoperfusion, sham-operated a7nAchRs(-/-) mice, a7nAchRs(-/-) with chronic cerebral hypoperfusion, a7nAchRs(-/-) with hypoxic hypobaric preconditioning and chronic cerebral hypoperfusion. For preconditioning, mice were exposed to hypoxia by "lifting" in barochamber to simulated altitude of 5600 m a.s.l. for 1 h/day on 3 consecutive days before surgical manipulation. Expressions of SIRT1, SIRT3 in brain tissue, and histopathological changes of the hippocampi were examined. It was shown that 8-week chronic hypoperfusion of the brain, caused by unilateral occlusion of the common carotid artery, was accompanied by injury to the neurons of the hippocampi of both hemispheres, which was more pronounced on the side of the occlusion. This damage, as well as the mechanisms of neuroprotection induced by hypoxic preconditioning, were maintained for at least 8 weeks by mechanisms mediated through a7nAChRs. Deficite of a7nAChRs was accompanied with reduction of neuronal damage caused CCH in 8 weeks, as well as preconditioning effects, and lead to compensatory activation of regulatory and protective mechanisms mediated by SIRT1, in normal conditions and in CCH. In wild-type (C57) mice, protective mechanisms in CCH were realized to a greater extent by increased expression of SIRT3 in both hemispheres of the brain.


Se sabe que el precondicionamiento hipóxico induce neuroprotección, pero aún se desconocen sus efectos y vías en la patología cerebral crónica. El objetivo fue establecer la participación de la subunidad a7 de los receptores nicotínicos de acetilcolina (a7nAchR) y las sirtuinas de tipo 1 (SIRT1) y 3 (SIRT3) en los efectos del precondicionamiento hipóxico hipobárico sobre el daño cerebral en ratones con hipoperfusión cerebral crónica causada por la oclusión de la arteria carótida común izquierda. Los ratones macho C57/6j (C57, tipo salvaje) y a7nAchRs(-/-) se dividieron en seis grupos experimentales (10 ratones por grupo): C57 con operación simulada, C57 con hipoperfusión cerebral crónica, C57 con precondicionamiento hipobárico hipóxico y crónica. hipoperfusión cerebral, ratones a7nAchRs(-/-) operados de forma simulada, a7nAchRs(-/-) con hipoperfusión cerebral crónica, a7nAchRs(-/-) con precondicionamiento hipobárico hipóxico e hipoperfusión cerebral crónica. Para el preacondicionamiento, los ratones fueron expuestos a hipoxia "levantándolos" en una cámara de barro a una altitud simulada de 5600 m s.n.m. durante 1 h/día durante 3 días consecutivos antes de la manipulación quirúrgica. Se examinaron las expresiones de SIRT1, SIRT3 en tejido cerebral y los cambios histopatológicos de los hipocampos. Se demostró que la hipoperfusión cerebral crónica de 8 semanas, causada por la oclusión unilateral de la arteria carótida común, se acompañaba de lesión de las neuronas del hipocampo de ambos hemisferios y que era más pronunciada en el lado de la oclusión. Este daño, así como los mecanismos de neuroprotección inducidos por el precondicionamiento hipóxico, se mantuvieron durante al menos 8 semanas mediante mecanismos mediados por a7nAChR. El déficit de a7nAChR se acompañó de una reducción del daño neuronal causado por CCH en 8 semanas, así como de efectos de precondicionamiento, y condujo a una activación compensatoria de mecanismos reguladores y protectores mediados por SIRT1, en condiciones normales y en CCH. En ratones de tipo salvaje (C57), los mecanismos de protección en CCH se realizaron en mayor medida mediante una mayor expresión de SIRT3 en ambos hemisfe- rios del cerebro.


Subject(s)
Animals , Mice , Brain Ischemia , Sirtuin 1/metabolism , Sirtuin 3/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Hypoxia , Cerebrovascular Circulation , Blotting, Western , Carotid Stenosis
11.
Cell Signal ; 121: 111275, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38942343

ABSTRACT

Keloid formation, characterized by aberrant fibroproliferation and immune dysregulation, remains a challenging clinical concern. This study aims to elucidate the neuroimmune mechanisms underlying keloid pathogenesis and explores the efficacy of a combined treatment approach involving modulation of the α7 nicotinic acetylcholine receptor (α7nAchR), a key player in neural transmission, and programmed death ligand 1 (PD-L1), an immune checkpoint molecule, for keloid intervention. A key innovation lies in the identification of signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) as a potential target gene influenced by this dual treatment. We elucidate the underlying mechanism, wherein the hypoxic keloid microenvironment fosters an upsurge in SCUBE3 secretion. Subsequently, SCUBE3 forms complexes with TGF-ß, initiating the activation of the PI3K/AKT/NF-κB signaling pathway. Notably, SCUBE3 is secreted in the form of exosomes, thereby exerting a profound influence on the differentiation of T cells and macrophages within the keloid milieu. This research not only provides a comprehensive understanding of the molecular mechanisms involved but also offers a promising avenue for the development of targeted therapies to address keloid-associated fibrosis and immune dysregulation. In conclusion, the combined inhibition of α7nAchR and PD-L1 represents a promising therapeutic strategy with SCUBE3 as a pivotal molecular target in the complex landscape of keloid pathophysiology.


Subject(s)
B7-H1 Antigen , Keloid , alpha7 Nicotinic Acetylcholine Receptor , Humans , B7-H1 Antigen/metabolism , Keloid/metabolism , Keloid/pathology , Keloid/immunology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism
12.
Toxicology ; 506: 153859, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825031

ABSTRACT

The toxicity of heated tobacco products (HTP) on the immune cells remains unclear. Here, U937-differentiated macrophages were exposed to a single and short-term exposure (30 minutes) of HTP vapor or cigarette smoke (CS) in an air-liquid interface (ALI) system to evaluate the effects on macrophages' early activation and polarization. In our system, HTP released lower amounts of polycyclic aromatic hydrocarbons (PAHs), but higher nicotine levels than CS into the cell culture supernatant. Both tobacco products triggered the expression of the α-7 nicotinic receptor (α7 nAChR) and reactive oxygen species (ROS) production. When challenged with a bacterial product, lipopolysaccharide (LPS), cells exposed to HTP or CS failed to respond properly and enhance ROS production upon LPS stimuli. Furthermore, both tobacco products also impaired bacterial phagocytosis and the exposures triggered higher IL-1ß secretion. The α7 nAChR antagonist treatment rescued the effects caused only by HTP exposure. The CS-exposed group switched macrophage to the pro-inflammatory M1, while HTP polarized to the suppressive M2 profile. Associated, data highlight that HTP and CS exposures similarly activate macrophages; nonetheless, the α7 nAChR pathway is only involved in HTP actions, and the distinct subsequent polarization caused by HTP or CS may influence the outcome of host defense.


Subject(s)
Macrophage Activation , Macrophages , Nicotiana , Reactive Oxygen Species , Smoke , alpha7 Nicotinic Acetylcholine Receptor , Macrophage Activation/drug effects , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Smoke/adverse effects , Reactive Oxygen Species/metabolism , U937 Cells , Tobacco Products , Phagocytosis/drug effects , Nicotine/toxicity , Hot Temperature , Lipopolysaccharides/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Interleukin-1beta/metabolism
13.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891925

ABSTRACT

Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.


Subject(s)
Dermatitis, Atopic , Disease Models, Animal , Mast Cells , Skin , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mast Cells/metabolism , Mast Cells/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatitis, Atopic/immunology , Mice , Skin/metabolism , Skin/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Inflammation/metabolism , Inflammation/pathology , Peptide Hydrolases/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Substance P/metabolism , Stress, Physiological , Mice, Inbred C57BL , Nerve Growth Factor/metabolism
14.
Antiviral Res ; 228: 105934, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880195

ABSTRACT

Herpes simplex virus type 1 (HSV-1), a neurotropic DNA virus, establishes latency in neural tissues, with reactivation causing severe consequences like encephalitis. Emerging evidence links HSV-1 infection to chronic neuroinflammation and neurodegenerative diseases. Microglia, the central nervous system's (CNS) immune sentinels, express diverse receptors, including α7 nicotinic acetylcholine receptors (α7 nAChRs), critical for immune regulation. Recent studies suggest α7 nAChR activation protects against viral infections. Here, we show that α7 nAChR agonists, choline and PNU-282987, significantly inhibit HSV-1 replication in microglial BV2 cells. Notably, this inhibition is independent of the traditional ionotropic nAChR signaling pathway. mRNA profiling revealed that choline stimulates the expression of antiviral factors, IL-1ß and Nos2, and down-regulates the apoptosis genes and type A Lamins in BV2 cells. These findings suggest a novel mechanism by which microglial α7 nAChRs restrict viral infections by regulating innate immune responses.


Subject(s)
Choline , Herpesvirus 1, Human , Microglia , Virus Replication , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Microglia/virology , Microglia/drug effects , Microglia/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/drug effects , Animals , Cell Line , Mice , Virus Replication/drug effects , Choline/pharmacology , Choline/metabolism , Bridged Bicyclo Compounds/pharmacology , Benzamides/pharmacology , Immunity, Innate , Herpes Simplex/virology , Herpes Simplex/metabolism , Interleukin-1beta/metabolism , Signal Transduction/drug effects , Apoptosis/drug effects , Antiviral Agents/pharmacology , Nicotinic Agonists/pharmacology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics
15.
Int Immunopharmacol ; 138: 112555, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38943973

ABSTRACT

The most common and serious complication among hospitalized and critically ill patients is sepsis-associated acute kidney damage (S-AKI), which raises the risk of comorbidities and is linked to a high mortality rate. Cholinergic anti-inflammatory pathway (CAP), an anti-inflammatory pathway mediated by the vagus nerve, acetylcholine, and α7 nicotinic acetylcholine receptors (α7nAChRs), offers new perspectives for the treatment of S-AKI. In this study, we investigated the role of CAP and α7nAChR in kidney injury by employing an LPS-induced septic kidney injury mouse model and GTS-21 intervention. C57BL/6 mice were injected with LPS, with or without GTS-21, in different subgroups. Kidney function was assessed by plasma creatinine, histology, and markers of kidney injury 24 h after intervention. The results demonstrated that GTS-21 could inhibit the systemic inflammatory response and directly protect the tubular cell injury from LPS. To explore the novel gene involved in this response, RNA sequencing of the renal proximal tubular epithelial cell (HK-2), pretreated with LPS and GTS-21, was conducted. The results indicate that GTS-21 administration reduces LPS-induced cytokines and chemokines secretion by HK-2, including CCL20, a potent chemokine attracting monocytes/macrophages. Furthermore, a macrophage transmigration assay revealed that GTS-21 inhibits macrophage transmigration by downregulating the expression of CCL20 in HK-2 cells. In conclusion, GTS-21, as an α7nAChR agonist, emerges as a noteworthy and versatile treatment for S-AKI. Its dual function of directly protecting renal tubular cells and regulating inflammatory responses represents a major advancement in the treatment of sepsis-induced AKI. This finding might pave the way for novel approaches to improving patient outcomes and reducing death rates in sepsis-related complications.


Subject(s)
Acute Kidney Injury , Lipopolysaccharides , Macrophages , Sepsis , alpha7 Nicotinic Acetylcholine Receptor , Animals , Humans , Male , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Benzylidene Compounds/pharmacology , Benzylidene Compounds/therapeutic use , Cell Line , Cytokines/metabolism , Disease Models, Animal , Kidney Tubules/pathology , Kidney Tubules/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Pyridines , Sepsis/drug therapy , Sepsis/complications , Sepsis/immunology
16.
Exp Neurol ; 379: 114879, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38942266

ABSTRACT

Traumatic brain injury (TBI) leads to changes in the neural circuitry of the hippocampus that result in chronic learning and memory deficits. However, effective therapeutic strategies to ameliorate these chronic learning and memory impairments after TBI are limited. Two pharmacological targets for enhancing cognition are nicotinic acetylcholine receptors (nAChRs) and GABAA receptors (GABAARs), both of which regulate hippocampal network activity to form declarative memories. A promising compound, 522-054, both allosterically enhances α7 nAChRs and inhibits α5 subunit-containing GABAARs. Administration of 522-054 enhances long-term potentiation (LTP) and cognitive functioning in non-injured animals. In this study, we assessed the effects of 522-054 on hippocampal synaptic plasticity and learning and memory deficits in the chronic post-TBI recovery period. Adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 12 wk after injury, we assessed basal synaptic transmission and LTP at the Schaffer collateral-CA1 synapse of the hippocampus. Bath application of 522-054 to hippocampal slices reduced deficits in basal synaptic transmission and recovered TBI-induced impairments in LTP. Moreover, treatment of animals with 522-054 at 12 wk post-TBI improved cue and contextual fear memory and water maze acquisition and retention without a measurable effect on cortical or hippocampal atrophy. These results suggest that dual allosteric modulation of α7 nAChR and α5 GABAAR signaling may be a potential therapy for treating cognitive deficits during chronic recovery from TBI.


Subject(s)
Brain Injuries, Traumatic , Rats, Sprague-Dawley , Receptors, GABA-A , alpha7 Nicotinic Acetylcholine Receptor , Animals , Male , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/agonists , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Rats , Receptors, GABA-A/metabolism , Allosteric Regulation/drug effects , Recovery of Function/drug effects , Recovery of Function/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology
17.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928421

ABSTRACT

Neuropathic pain, which refers to pain caused by a lesion or disease of the somatosensory system, represents a wide variety of peripheral or central disorders. Treating neuropathic pain is quite demanding, primarily because of its intricate underlying etiological mechanisms. The central nervous system relies on microglia to maintain balance, as they are associated with serving primary immune responses in the brain next to cell communication. Ferroptosis, driven by phospholipid peroxidation and regulated by iron, is a vital mechanism of cell death regulation. Neuroinflammation can be triggered by ferroptosis in microglia, which contributes to the release of inflammatory cytokines. Conversely, neuroinflammation can induce iron accumulation in microglia, resulting in microglial ferroptosis. Accumulating evidence suggests that neuroinflammation, characterized by glial cell activation and the release of inflammatory substances, significantly exacerbates the development of neuropathic pain. By inhibiting microglial ferroptosis, it may be possible to prevent neuroinflammation and subsequently alleviate neuropathic pain. The activation of the homopentameric α7 subtype of the neuronal nicotinic acetylcholine receptor (α7nAChR) has the potential to suppress microglial activation, transitioning M1 microglia to an M2 phenotype, facilitating the release of anti-inflammatory factors, and ultimately reducing neuropathic pain. Recent years have witnessed a growing recognition of the regulatory role of α7nAChR in ferroptosis, which could be a potential target for treating neuropathic pain. This review summarizes the mechanisms related to α7nAChR and the progress of ferroptosis in neuropathic pain according to recent research. Such an exploration will help to elucidate the relationship between α7nAChR, ferroptosis, and neuroinflammation and provide new insights into neuropathic pain management.


Subject(s)
Ferroptosis , Microglia , Neuralgia , Neuroinflammatory Diseases , alpha7 Nicotinic Acetylcholine Receptor , Neuralgia/metabolism , Neuralgia/etiology , Neuralgia/pathology , Humans , Animals , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Microglia/metabolism , Microglia/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Inflammation/metabolism , Inflammation/pathology
18.
J Mol Model ; 30(7): 233, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937296

ABSTRACT

CONTEXT: Existing researches confirmed that ß amyloid (Aß) has a high affinity for the α7 nicotinic acetylcholine receptor (α7nAChR), associating closely to Alzheimer's disease. The majority of related studies focused on the experimental reports on the neuroprotective role of Aß fragment (Aßx), however, with a lack of investigation into the most suitable binding region and mechanism of action between Aß fragment and α7nAChR. In the study, we employed four Aß1-42 fragments Aßx, Aß1-16, Aß10-16, Aß12-28, and Aß30-42, of which the first three were confirmed to play neuroprotective roles upon directly binding, to interact with α7nAChR. METHODS: The protein-ligand docking server of CABS-DOCK was employed to obtain the α7nAChR-Aßx complexes. Only the top α7nAChR-Aßx complexes were used to perform all-atom GROMACS dynamics simulation in combination with Charmm36 force field, by which α7nAChR-Aßx interactions' dynamic behavior and specific locations of these different Aßx fragments were identified. MM-PBSA calculations were also done to estimate the binding free energies and the different contributions from the residues in the Aßx. Two distinct results for the first three and fourth Aßx fragments in binding site, strength, key residue, and orientation, account for why the fourth fails to play a neuroprotective role at the molecular level.


Subject(s)
Amyloid beta-Peptides , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments , Protein Binding , alpha7 Nicotinic Acetylcholine Receptor , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , alpha7 Nicotinic Acetylcholine Receptor/chemistry , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Humans , Binding Sites , Ligands
19.
J Affect Disord ; 362: 114-125, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38944290

ABSTRACT

BACKGROUND: Growing evidence highlights the role of the spleen-brain axis in inflammation-associated depression. The α7-subtype of nicotinic acetylcholine receptor (α7 nAChR, encoded by the Chrna7 gene) is implicated in systemic inflammation, with Chrna7 knock-out (KO) mice displaying depression-like behaviors. Yet, the influence of spleen nerve on depression-like behaviors in these KO mice remains to be elucidated. METHODS: We investigated the effects of the splenic nerve denervation (SND) on depression-like behaviors, the protein expression in the prefrontal cortex (PFC), and the gut microbiota composition in Chrna7 KO mice. RESULTS: SND markedly alleviated depression-like behaviors and the reduced expression of GluA1 and postsynaptic density protein-95 (PSD-95) in the PFC of Chrna7 KO mice. No changes in α-diversity of gut microbiota were noted among the control, KO + sham, and KO + SND groups. However, significant differences in ß-diversity of gut microbiota were noted among the groups. Notable alterations in various microbiota (e.g., Fluviimonas_pallidilutea, Maribacter_arcticus, Parvibacter_caecicola) and plasma metabolites (e.g., helicide, N-acetyl-L-aspartic acid, α-D-galactose 1-phosphate, choline, creatine) were observed between KO + sham and KO + SND groups. Interestingly, correlations were found between the relative abundance of specific microbiota and other outcomes, including synaptic proteins, metabolites and behavioral data. LIMITATIONS: The underlying mechanisms remain to be fully understood. CONCLUSIONS: Our findings indicate that the splenic nerve contributes to depression-like phenotypes in Chrna7 KO mice via the spleen-gut-brain axis.


Subject(s)
Depression , Gastrointestinal Microbiome , Mice, Knockout , Spleen , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Mice , Spleen/innervation , Brain-Gut Axis/physiology , Prefrontal Cortex/metabolism , Male , Disease Models, Animal , Behavior, Animal/physiology , Receptors, AMPA/metabolism , Disks Large Homolog 4 Protein/metabolism
20.
Front Cell Infect Microbiol ; 14: 1394713, 2024.
Article in English | MEDLINE | ID: mdl-38836054

ABSTRACT

The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.


Subject(s)
Glycoproteins , Rabies virus , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Rabies virus/physiology , Rabies virus/metabolism , Humans , Glycoproteins/metabolism , Glycoproteins/genetics , Oocytes/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Host-Pathogen Interactions , Protein Binding , Rabies/metabolism , Rabies/virology , Acetylcholine/metabolism , Acetylcholine/pharmacology , Neurotoxins/metabolism , Neurotoxins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL