Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-7, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37325844

RESUMO

This study investigates the enhancement of enzymatic catalytic performance by immobilizing laccase on various nanostructured mesoporous silica materials (SBA-15, MCF, and MSU-F). The activity of immobilized laccase was evaluated under different hydrothermal, pH, and solvent conditions, with laccase@MSU-F showing a three-fold increase in stability. Laccase immobilized on these materials demonstrated stability in a pH range of 4.5 to 10.0, while free laccase was inactivated at pH higher than 7. Molecular dynamics simulations revealed that electrostatic interactions and protective confinement effects contribute to the improved stability of immobilized laccase. Overall, the findings suggest that nanomaterials can enhance the operational stability and recovery of enzymes.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 41(19): 9313-9325, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36416566

RESUMO

Most atypical antipsychotics derive from a high dropout of drug treatments due to adverse cardiometabolic side effects. These side effects are caused, in part, by the H1 receptor blockade. The current work sought a clozapine derivative with a reduced affinity for the H1 receptor while maintaining its therapeutic effect linked to D2 receptor binding. Explicit molecular dynamics simulations and end-point free energy calculations of clozapine in complex with the D2 and H1 receptors embedded in cholesterol-rich lipid bilayers were performed to analyze the intermolecular interactions and address the relevance of clozapine-functional groups. Based on that, free energy perturbation calculations were performed to measure the change in free energy of clozapine structural modifications. Our results indicate the best clozapine derivative is the iodine atom substitution for chlorine. The latter is mainly due to electrostatic interaction loss for the H1 receptor, while the halogen orientation out of the D2 active site reduces the impact on the affinity.Communicated by Ramaswamy H. Sarma.


Assuntos
Antipsicóticos , Doenças Cardiovasculares , Clozapina , Humanos , Clozapina/efeitos adversos , Clozapina/metabolismo , Receptores Histamínicos H1 , Simulação de Dinâmica Molecular , Antipsicóticos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico
3.
Transl Oncol ; 27: 101584, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36371956

RESUMO

The increase in incidence of degenerative diseases has fueled the development of novel materials, mostly focused on reducing adverse effects caused by current medical therapies. Theranostic materials represent an alternative to treat degenerative diseases, since they combine diagnostic properties and localized therapy within the same material. This work presents the synthesis and characterization of hybrid materials designed for theranostic purposes. The hybrid materials were composed of LiGa5O8:Cr3+ (LGO) with emission lines in the near infrared (NIR), hence providing an excellent diagnostic ability. As for the therapy part, the hybrid nanomaterials contained gold nanorods (AuR) with localized surface plasmon resonance (LSPR). Once AuR are excited, plasmonic processes are triggered at their surface resulting in increased localized temperature capable of inducing irreversible damage to the cells. A detailed characterization of the hybrid materials confirmed proper assembly of LGO and AuR. Moreover, these nanocomposites preserved their luminescent properties and LSPR. Finally, the cytotoxic potential of the hybrid material was evaluated in different cell lines by cell viability colorimetric assays to determine its possible use as theranostic agent. The success in the synthesis of hybrid materials based on LGO with emission in the NIR coupled with AuR, provides a new perspective for the design of hybrid materials with improved properties to be used in biomedical fields.

4.
J Colloid Interface Sci ; 627: 64-71, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35841709

RESUMO

Systematic ex-situ X-ray diffraction (XRD) characterization and electrochemical study revealed the key roles that the cut-off voltage and fluoroethylene carbonate (FEC) additive play on improving electrochemical performance of the Bi3Ge4O12-based (BGO) electrode. The ex-situ XRD analysis revealed that BGO particles suffer multiphase transitions during the (dis)charge reactions, being observed some phases as Bi2O2.33, BiLi3, Li2O, Ge4Li15, Ge2Li7, Ge3Li7, Ge5Li22, Ge4Li9, Bi2O3 and GeO2. The electrochemical evaluation exhibited that the addition of 5 v/v% of FEC in 1.0 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate and diethyl carbonate (EC: DEC) at an applied cut-off voltage (1.5 V vs Li/Li+) improves the specific capacity (29%, delivering 479 mAh g-1), capacity retention (12%) and rate capability (369 mAh g-1 at 1000 mA g-1) of the BGO-based electrode. Also, FEC promotes the formation of a stable solid-electrolyte interface (SEI) layer on the anode at a cut-off voltage of 1.5 V vs Li/Li+. It displays the lowest values of SEI and charge transfer (CT) resistances, and electrode polarization, improving the reversibility of the alloying reactions related to Ge-Li and Bi-Li and maintaining their redox activity after 100 cycles, according to dQ dV-1 data.

5.
J Chem Inf Model ; 61(11): 5362-5376, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34652141

RESUMO

One of the main challenges of structure-based virtual screening (SBVS) is the incorporation of the receptor's flexibility, as its explicit representation in every docking run implies a high computational cost. Therefore, a common alternative to include the receptor's flexibility is the approach known as ensemble docking. Ensemble docking consists of using a set of receptor conformations and performing the docking assays over each of them. However, there is still no agreement on how to combine the ensemble docking results to obtain the final ligand ranking. A common choice is to use consensus strategies to aggregate the ensemble docking scores, but these strategies exhibit slight improvement regarding the single-structure approach. Here, we claim that using machine learning (ML) methodologies over the ensemble docking results could improve the predictive power of SBVS. To test this hypothesis, four proteins were selected as study cases: CDK2, FXa, EGFR, and HSP90. Protein conformational ensembles were built from crystallographic structures, whereas the evaluated compound library comprised up to three benchmarking data sets (DUD, DEKOIS 2.0, and CSAR-2012) and cocrystallized molecules. Ensemble docking results were processed through 30 repetitions of 4-fold cross-validation to train and validate two ML classifiers: logistic regression and gradient boosting trees. Our results indicate that the ML classifiers significantly outperform traditional consensus strategies and even the best performance case achieved with single-structure docking. We provide statistical evidence that supports the effectiveness of ML to improve the ensemble docking performance.


Assuntos
Aprendizado de Máquina , Proteínas , Benchmarking , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas/metabolismo
6.
J Chem Inf Model ; 60(2): 786-793, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31657548

RESUMO

The transmembrane glycoprotein mucin 1 (MUC1) is an attractive tumor marker for cancer therapy and diagnosis. The nine amino acid extracellular epitope APDTRPAPG of this protein is selectively recognized by the S2.2 single-stranded DNA anti-MUC1 aptamer, which has emerged as a promising template for designing novel targeting agents for MUC1-directed therapy. In this work, 100 ns molecular dynamics (MD) simulations, MM/GBSA binding free energy calculations, and conformational analysis were employed to propose a novel prospective anti-MUC1 aptamer with increased affinity toward the MUC1 epitope resulting from the double mutation of the T11 and T12 residues with PSU and U nucleosides, respectively. The double mutant aptamer exhibits a tight interaction with the MUC1 epitope and adopts a groove conformation that structurally favors the intermolecular contact with the epitope through the intermediate T11-A18 region leaving the 3' and 5' ends free for further chemical conjugation with a nanocarrier or pharmaceutical. These results are valuable to gain understanding about the molecular features governing aptamer-epitope interactions and constitute a first key step for the design of novel aptamer-based nanocarriers for MUC1-targeted cancer therapy.


Assuntos
Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Simulação por Computador , Terapia de Alvo Molecular , Mucina-1/metabolismo , Neoplasias/tratamento farmacológico , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Simulação de Dinâmica Molecular , Neoplasias/metabolismo , Conformação de Ácido Nucleico , Termodinâmica
7.
Chem Commun (Camb) ; 54(81): 11483-11486, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30256349

RESUMO

An unexplored promising lithiation-host anode material, Bi4Ge3O12, delivers a reversible specific discharge capacity of ∼586 mA h g-1 at 200 mA g-1 after 500 cycles with a coulombic efficiency of ∼99.8%. DFT calculations detected distorted [BiO6]9- octahedra, and the band structure of BGO revealed an indirect gap of 3.50 eV. A plausible reaction mechanism of storing lithium is proposed.

8.
Bioconjug Chem ; 29(4): 1073-1080, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29337540

RESUMO

Use of pesticides is usually related to overproduction of crops in order to overcome worldwide demand of food and alimentary safety. Nevertheless, pesticides are environmental persistent molecules, such as the organochlorine pesticides, which are often found in undesired places. In this work, we show that a hybrid nanomaterial (laccase-MSU-F) readily oxidizes the pesticide dichlorophen, reducing its acute genotoxicity and apoptotic effects. In order to predict chronic alterations related to endocrine disruption, we compared the calculated affinity of dichlorophen oxidized subproducts to steroid hormone nuclear receptors (NRs), using molecular simulation methods. We found a reduction in theoretical affinity of subproducts of oxidized dichlorophen for the ligand-binding pocket of NRs (∼5 kcal/mol), likewise of changes in binding modes, that suggests a reduction in binding events (RMSD values < 10 Å).


Assuntos
Diclorofeno/química , Enzimas Imobilizadas/química , Lacase/química , Simulação de Acoplamento Molecular , Nanoporos , Praguicidas/química , Apoptose/efeitos dos fármacos , Diclorofeno/farmacologia , Disruptores Endócrinos/química , Disruptores Endócrinos/farmacologia , Cinética , Mutagênicos/química , Mutagênicos/farmacologia , Oxirredução , Praguicidas/farmacologia , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Relação Estrutura-Atividade
9.
J Chem Inf Model ; 58(2): 443-452, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29368924

RESUMO

The protein side-chain packing problem (PSCPP) is a central task in computational protein design. The problem is usually modeled as a combinatorial optimization problem, which consists of searching for a set of rotamers, from a given rotamer library, that minimizes a scoring function (SF). The SF is a weighted sum of terms, that can be decomposed in physics-based and knowledge-based terms. Although there are many methods to obtain approximate solutions for this problem, all of them have similar performances and there has not been a significant improvement in recent years. Studies on protein structure prediction and protein design revealed the limitations of current SFs to achieve further improvements for these two problems. In the same line, a recent work reported a similar result for the PSCPP. In this work, we ask whether or not this negative result regarding further improvements in performance is due to (i) an incorrect weighting of the SFs terms or (ii) the constrained conformation resulting from the protein crystallization process. To analyze these questions, we (i) model the PSCPP as a bi-objective combinatorial optimization problem, optimizing, at the same time, the two most important terms of two SFs of state-of-the-art algorithms and (ii) performed a preprocessing relaxation of the crystal structure through molecular dynamics to simulate the protein in the solvent and evaluated the performance of these two state-of-the-art SFs under these conditions. Our results indicate that (i) no matter what combination of weight factors we use the current SFs will not lead to better performances and (ii) the evaluated SFs will not be able to improve performance on relaxed structures. Furthermore, the experiments revealed that the SFs and the methods are biased toward crystallized structures.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Algoritmos , Técnicas de Química Combinatória , Conformação Proteica
10.
J Mol Model ; 23(4): 118, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28293795

RESUMO

The over-expression of immune-suppressors such as IL-10 is a crucial landmark in both tumor progression, and latent viral and parasite infection. IL-10 is a multifunctional protein. Besides its immune-cell suppressive function, it also promotes B-cell tumorigenesis of lymphomas and melanoma. Human pathogens like unicellular parasites and viruses that remain latent inside B cells promote the over-expression of hIL-10 upon infection, which inhibits cell-mediated immune surveillance, and at the same time mediates B cell proliferation. The B-cell specific oncogenic latent virus Epstein-Barr virus (EBV) encodes a viral homologue of hIL-10 (ebvIL-10), expressed during lytic viral proliferation. Once expressed, ebvIL-10 inhibits cell-mediated immune surveillance, assuring EBV re-infection. During long-term latency, EBV-infected B cells over-express hIL-10 to assure B-cell proliferation, occasionally inducing EBV-mediated lymphomas. The amino acid sequences of hIL-10 and ebvIL-10 are more than 80% identical and thus have a very similar tridimensional structure. Based on their published crystallographic structures bound to their human receptor IL10R1, we report a structure-based design of hIL-10 and ebvIL-10 inhibitors based on 3 loops from IL10R1 that establish specific hydrogen bonds with the two IL10s. We have grafted these loops onto a permissible loop in three well-known miniprotein scaffolds-the Conus snail toxin MVIIA, the plant-derived trypsin inhibitor EETI, and the human appetite modulator AgRP. Our computational workflow described in detail below was invigorated by the negative and positive controls implemented, and therefore paves the way for future in vitro and in vivo validation assays of the IL-10 inhibitors engineered.


Assuntos
Desenho de Fármacos , Herpesvirus Humano 4/metabolismo , Interleucina-10/antagonistas & inibidores , Simulação de Acoplamento Molecular , Biologia Computacional , Humanos , Proteínas Virais/antagonistas & inibidores , Fluxo de Trabalho
11.
Sci Technol Adv Mater ; 16(5): 055004, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877839

RESUMO

The use of nanomaterials allows the design of ultrasensitive biosensors with advantages in the detection of organic molecules. Catechol and catechin are molecules that occur naturally in fruits, and their presence in products like dyes and wines affects quality standards. In this study, catechol and catechin were measured at the nanoscale by means of cyclic voltammetry. The oxidation of Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes (Lac/CN x -MWCNT) and on graphene oxide (Lac/GO) was used to measure the concentrations of catechol and catechin. Nitrogen-doped multiwalled carbon nanotubes (CN x -MWCNT) were synthesized by spray pyrolysis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). Covalently bonded hybrids with laccase (Lac/CN x -MWCNT and Lac/GO) were generated. Catalytic activity of free enzymes determined with syringaldazine yielded 14 584 UmL-1. With Lac/CN x -MWCNT at concentrations of 6.4 mmol L-1 activity was 9326 U mL-1, while enzyme activity measured with Lac/GO at concentration of 6.4 mmol L-1 was 9 234 U mL-1. The Lac/CN x -MWCNT hybrid showed higher stability than Lac/GO at different ethyl alcohol concentrations. The Lac/CN x -MWCNT hybrid can measure concentrations, not previously reported, as low as 1 × 10-8 mol L-1 by measuring the electric current responses.

12.
Biosens Bioelectron ; 61: 569-74, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24953844

RESUMO

A new full enzymatic fuel cell was built and characterized. Both enzymatic electrodes were molecularly oriented to enhance the direct electron transfer between the enzyme active site and the electrode surface. The anode consisted in immobilized alcohol oxidase on functionalized carbon nanotubes with 4-azidoaniline, which acts as active-site ligand to orientate the enzyme molecule. The cathode consisted of immobilized laccase on functionalized graphite electrode with 4-(2-aminoethyl) benzoic acid. The enzymatic fuel cell reaches 0.5 V at open circuit voltage with both, ethanol and methanol, while in short circuit the highest current intensity of 250 µA cm(-2) was obtained with methanol. Concerning the power density, the methanol was the best substrate reaching 60 µW cm(-2), while with ethanol 40 µW cm(-2) was obtained.


Assuntos
Oxirredutases do Álcool/química , Basidiomycota/enzimologia , Técnicas Biossensoriais/instrumentação , Enzimas Imobilizadas/química , Lacase/química , Pichia/enzimologia , Fontes de Energia Bioelétrica , Eletrodos , Transporte de Elétrons , Elétrons , Glucose Oxidase/química
13.
Z Naturforsch C J Biosci ; 65(1-2): 1-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20355313

RESUMO

Bioreduction of several prochiral carbonylic compounds such as acetophenone (1), ethyl acetoacetate (2) and ethyl phenylpropionate (3) to the corresponding optically active sec-alcohols 1a-3a was performed using wild-type strains of Pichia pastoris UBB 1500, Rhodotorula sp., and Saccharomyces cerevisiae. The reductions showed moderate to excellent conversion and high enantiomeric excess, in an extremely mild and environmentally benign manner in aqueous medium, using glucose as cofactor regeneration system. The obtained alcohols follow Prelog's rule, but in the reduction of 1 with P. pastoris UBB 1500 the anti-Prelog enantiopreference was observed.


Assuntos
Acetoacetatos/metabolismo , Acetofenonas/metabolismo , Fenilpropionatos/metabolismo , Pichia/metabolismo , Rhodotorula/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetoacetatos/química , Acetofenonas/química , Cinética , Oxirredução , Fenilpropionatos/química , Pichia/crescimento & desenvolvimento , Rhodotorula/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA