Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745916

RESUMO

The production of green plastic materials from defatted silkworm meal (SW) through a scalable technique (e.g., injection moulding) would permit the revalorization of a by-product of the textile industry. The textile by-product contains an estimable protein content (~50%) which can justify its applicability in the field of eco-materials. Thus, SW-based materials have been processed and characterized, sometimes requiring the addition of another biodegradable polymer, such as polycaprolactone (PCL), in the formulation. Thermomechanical, tensile and water uptake properties have been assessed at different PCL contents (from 0 to 20%). The viscoelasticity of the plastic composites when heated was greatly affected by the melting point of PCL, which also led generally to an increase in their extensibility and resistance. However, this effect of PCL was diminished when composites were processed at higher moulding temperatures. As PCL possesses a hydrophobic character, a decrease in the water uptake was generally detected as PCL content increased, which could also be related to the lower plasticizer content in the formulation. Silkworm meal is an adequate ingredient to consider in the production of green plastic materials that would eventually add value to a main by-product of the sericulture industry.

2.
Gels ; 7(4)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34698192

RESUMO

Chitosan-pectin hydrogels were prepared, and their rheological properties were assessed in order to select the best system to develop scaffolds by 3D printing. Hydrogels showed a weak gel behavior with shear thinning flow properties, caused by the physical interactions formed between both polysaccharides, as observed by FTIR analysis. Since systems with high concentration of pectin showed aggregations, the system composed of 2 wt% chitosan and 2 wt% pectin (CHI2PEC2) was selected for 3D printing. 3D printed scaffolds showed good shape accuracy, and SEM and XRD analyses revealed a homogeneous and amorphous structure. Moreover, scaffolds were stable and kept their shape and size after a cycle of compression sweeps. Their integrity was also maintained after immersion in PBS at 37 °C, showing a high swelling capacity, suitable for exudate absorption in wound healing applications.

3.
Polymers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072653

RESUMO

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.

4.
Foods ; 10(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947093

RESUMO

A great amount of biowastes, comprising byproducts and biomass wastes, is originated yearly from the agri-food industry. These biowastes are commonly rich in proteins and polysaccharides and are mainly discarded or used for animal feeding. As regulations aim to shift from a fossil-based to a bio-based circular economy model, biowastes are also being employed for producing bio-based materials. This may involve their use in high-value applications and therefore a remarkable revalorization of those resources. The present review summarizes the main sources of protein from biowastes and co-products of the agri-food industry (i.e., wheat gluten, potato, zein, soy, rapeseed, sunflower, protein, casein, whey, blood, gelatin, collagen, keratin, and algae protein concentrates), assessing the bioplastic application (i.e., food packaging and coating, controlled release of active agents, absorbent and superabsorbent materials, agriculture, and scaffolds) for which they have been more extensively produced. The most common wet and dry processes to produce protein-based materials are also described (i.e., compression molding, injection molding, extrusion, 3D-printing, casting, and electrospinning), as well as the main characterization techniques (i.e., mechanical and rheological properties, tensile strength tests, rheological tests, thermal characterization, and optical properties). In this sense, the strategy of producing materials from biowastes to be used in agricultural applications, which converge with the zero-waste approach, seems to be remarkably attractive from a sustainability prospect (including environmental, economic, and social angles). This approach allows envisioning a reduction of some of the impacts along the product life cycle, contributing to tackling the transition toward a circular economy.

5.
Polymers (Basel) ; 13(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802290

RESUMO

The replacement of common acrylic derivatives by biodegradable materials in the formulation of superabsorbent materials would lessen the associated environmental impact. Moreover, the use of by-products or biowastes from the food industry that are usually discarded would promote a desired circular economy. The present study deals with the development of superabsorbent materials based on a by-product from the meat industry, namely plasma protein, focusing on the effects of a freeze-drying stage before blending with glycerol and eventual injection molding. More specifically, this freeze-drying stage is carried out either directly on the protein flour or after its solubilization in deionized water (10% w/w). Superabsorbent materials obtained after this solubilization-freeze-drying process display higher Young's modulus and tensile strength values, without affecting their water uptake capacity. As greater water uptake is commonly related to poorer mechanical properties, the proposed solubilization-freeze-drying process is a useful strategy for producing strengthened hydrophilic materials.

6.
J Environ Manage ; 263: 110353, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883472

RESUMO

Nowadays, as the world population is in need of creating alternative materials that can replace conventional plastics, microalgae biomass may be identified as a viable source for producing more environmentally friendly materials. Scenedesmus sp and Desmodesmus sp are the main components (~80%) of a microalgae consortium (MC) that first has been used to remove Nitrogen and Phosphorus from wastewater. The potential to develop bioplastic materials from MC considering its relatively high protein content (~48%) has been assessed in the present manuscript, using as a reference a commercial biomass rich an Arthrospira specie (AM) also present in the studied consortium. Bioplastics were obtained through injection moulding of blends obtained after mixing with different amounts of glycerol, and eventually characterized using Dynamic Mechanical Thermal Analysis (DMTA), water immersion and tensile tests. All bioplastics displayed a glass transition temperature around 60 °C, showing a thermoplastic behavior which is less pronounced in the CM based bioplastics. This would imply a greater thermal resistance of bioplastics produced from the biomass harvested in wastewater. Moreover, these bioplastics showed a lower ability to absorb water when immersed, due to the lower deformability displayed in the tensile tests. The mechanical properties of all samples, independently of the nature of the biomass, were improved when the presence of the biomass was higher. Therefore, results here presented prove the potential of valorisation of microalgae consortia used in the effective treatment of wastewater through the development of bioplastic materials.


Assuntos
Microalgas , Scenedesmus , Biomassa , Nitrogênio/análise , Fósforo , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA