Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Chemistry ; 29(26): e202203941, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36791391

RESUMO

Plant research is hampered in several aspects by a lack of pure oligosaccharide samples that closely represent structural features of cell wall glycans. An alternative to purely chemical synthesis to access these oligosaccharides is chemo-enzymatic synthesis using glycosynthases. These enzymes enable the ligation of oligosaccharide donors, when activated for example as α-glycosyl fluorides, with suitable acceptor oligosaccharides. Herein, the synthesis of xylan oligosaccharides up to dodecasaccharides is reported, with glycosynthase-mediated coupling reactions as key steps. The xylo-oligosaccharide donors were protected at the non-reducing end with a 4-O-tetrahydropyranyl (THP) group to prevent polymerization. Installation of an unnatural 3-O-methylether substituent at the reducing end xylose of the oligosaccharides ensured good water solubility. Biochemical assays demonstrated enzymatic activity for the xylan acetyltransferase XOAT1 from Arabidopsis thaliana, xylan arabinofuranosyl-transferase XAT3 enzymes from rice and switchgrass, and the xylan glucuronosyltransferase GUX3 from Arabidopsis thaliana. In case of the glucuronosyltransferase GUX3, MALDI-MS/MS analysis of the reaction product suggested that a single glucuronosyl substituent was installed primarily at the central xylose residues of the dodecasaccharide acceptor, demonstrating the value of long-chain acceptors for assaying biosynthetic glycosyltransferases.


Assuntos
Arabidopsis , Xilanos , Xilanos/química , Espectrometria de Massas em Tandem , Xilose , Oligossacarídeos/química , Glucuronosiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA