Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153018

RESUMO

Diet habits and nutrition quality significantly impact health and disease. Here is delve into the intricate relationship between diet habits, nutrition quality, and their direct impact on health and homeostasis. Focusing on (-)-Epicatechin, a natural flavanol found in various foods like green tea and cocoa, known for its positive effects on cardiovascular health and diabetes prevention. The investigation encompasses the absorption, metabolism, and distribution of (-)-Epicatechin in the human body, revealing a diverse array of metabolites in the circulatory system. Notably, (-)-Epicatechin demonstrates an ability to activate nitric oxide synthase (eNOS) through the G protein-coupled estrogen receptor (GPER). While the precise role of GPER and its interaction with classical estrogen receptors (ERs) remains under scrutiny, the study employs computational methods, including density functional theory, molecular docking, and molecular dynamics simulations, to assess the physicochemical properties and binding affinities of key (-)-Epicatechin metabolites with GPER. DFT analysis revealed distinct physicochemical properties among metabolites, influencing their reactivity and stability. Rigid and flexible molecular docking demonstrated varying binding affinities, with some metabolites surpassing (-)-Epicatechin. Molecular dynamics simulations highlighted potential binding pose variations, while MMGBSA analysis provided insights into the energetics of GPER-metabolite interactions. The outcomes elucidate distinct interactions, providing insights into potential molecular mechanisms underlying the effects of (-)-Epicatechin across varied biological contexts.

2.
Life (Basel) ; 13(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36675972

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder characterized by cerebellar ataxia and retinopathy. SCA7 is caused by a CAG expansion in the ATXN7 gene, which results in an extended polyglutamine (polyQ) tract in the encoded protein, the ataxin-7. PolyQ expanded ataxin-7 elicits neurodegeneration in cerebellar Purkinje cells, however, its impact on the SCA7-associated retinopathy remains to be addressed. Since Müller glial cells play an essential role in retinal homeostasis, we generate an inducible model for SCA7, based on the glial Müller MIO-M1 cell line. The SCA7 pathogenesis has been explained by a protein gain-of-function mechanism, however, the contribution of the mutant RNA to the disease cannot be excluded. In this direction, we found nuclear and cytoplasmic foci containing mutant RNA accompanied by subtle alternative splicing defects in MIO-M1 cells. RNA foci were also observed in cells from different lineages, including peripheral mononuclear leukocytes derived from SCA7 patient, suggesting that this molecular mark could be used as a blood biomarker for SCA7. Collectively, our data showed that our glial cell model exhibits the molecular features of SCA7, which makes it a suitable model to study the RNA toxicity mechanisms, as well as to explore therapeutic strategies aiming to alleviate glial dysfunction.

3.
Front Genet ; 11: 578712, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193700

RESUMO

Cellular commitment and differentiation involve highly coordinated mechanisms by which tissue-specific genes are activated while others are repressed. These mechanisms rely on the activity of specific transcription factors, chromatin remodeling enzymes, and higher-order chromatin organization in order to modulate transcriptional regulation on multiple cellular contexts. Tissue-specific transcription factors are key mediators of cell fate specification with the ability to reprogram cell types into different lineages. A classic example of a master transcription factor is the muscle specific factor MyoD, which belongs to the family of myogenic regulatory factors (MRFs). MRFs regulate cell fate determination and terminal differentiation of the myogenic precursors in a multistep process that eventually culminate with formation of muscle fibers. This developmental progression involves the activation and proliferation of muscle stem cells, commitment, and cell cycle exit and fusion of mononucleated myoblast to generate myotubes and myofibers. Although the epigenetics of muscle regeneration has been extensively addressed and discussed over the recent years, the influence of higher-order chromatin organization in skeletal muscle regeneration is still a field of development. In this review, we will focus on the epigenetic mechanisms modulating muscle gene expression and on the incipient work that addresses three-dimensional genome architecture and its influence in cell fate determination and differentiation to achieve skeletal myogenesis. We will visit known alterations of genome organization mediated by chromosomal fusions giving rise to novel regulatory landscapes, enhancing oncogenic activation in muscle, such as alveolar rhabdomyosarcomas (ARMS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA