Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0281236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745648

RESUMO

Automated screening systems in conjunction with machine learning-based methods are becoming an essential part of the healthcare systems for assisting in disease diagnosis. Moreover, manually annotating data and hand-crafting features for training purposes are impractical and time-consuming. We propose a segmentation and classification-based approach for assembling an automated screening system for the analysis of calcium imaging. The method was developed and verified using the effects of disease IgGs (from Amyotrophic Lateral Sclerosis patients) on calcium (Ca2+) homeostasis. From 33 imaging videos we analyzed, 21 belonged to the disease and 12 to the control experimental groups. The method consists of three main steps: projection, segmentation, and classification. The entire Ca2+ time-lapse image recordings (videos) were projected into a single image using different projection methods. Segmentation was performed by using a multi-level thresholding (MLT) step and the Regions of Interest (ROIs) that encompassed cell somas were detected. A mean value of the pixels within these boundaries was collected at each time point to obtain the Ca2+ traces (time-series). Finally, a new matrix called feature image was generated from those traces and used for assessing the classification accuracy of various classifiers (control vs. disease). The mean value of the segmentation F-score for all the data was above 0.80 throughout the tested threshold levels for all projection methods, namely maximum intensity, standard deviation, and standard deviation with linear scaling projection. Although the classification accuracy reached up to 90.14%, interestingly, we observed that achieving better scores in segmentation results did not necessarily correspond to an increase in classification performance. Our method takes the advantage of the multi-level thresholding and of a classification procedure based on the feature images, thus it does not have to rely on hand-crafted training parameters of each event. It thus provides a semi-autonomous tool for assessing segmentation parameters which allows for the best classification accuracy.


Assuntos
Cálcio , Diagnóstico por Imagem , Humanos , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
2.
IEEE J Biomed Health Inform ; 27(4): 1747-1757, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36318553

RESUMO

Cervical squamous intra-epithelial lesions (SIL) are precursor cancer lesions and their diagnosis is important because patients have a chance to be cured before cancer develops. In the diagnosis of the disease, pathologists decide by considering the cell distribution from the basal to the upper membrane. The idea, inspired by the pathologists' point of view, is based on the fact that cell amounts differ in the basal, central, and upper regions of tissue according to the level of Cervical Intraepithelial Neoplasia (CIN). Therefore, histogram information can be used for tissue classification so that the model can be explainable. In this study, two different classification schemes are proposed to show that the local histogram is a useful feature for the classification of cervical tissues. The first classifier is Kullback Leibler divergence-based, and the second one is the classification of the histogram by combining the embedding feature vector from morphometric features. These algorithms have been tested on a public dataset.The method we propose in the study achieved an accuracy performance of 78.69% in a data set where morphology-based methods were 69.07% and Convolutional Neural Network (CNN) patch-based algorithms were 75.77%. The proposed statistical features are robust for tackling real-life problems as they operate independently of the lesions manifold.


Assuntos
Algoritmos , Pescoço , Humanos , Redes Neurais de Computação , Projetos de Pesquisa
3.
Med Biol Eng Comput ; 59(7-8): 1545-1561, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34245400

RESUMO

The cervical cancer developing from the precancerous lesions caused by the human papillomavirus (HPV) has been one of the preventable cancers with the help of periodic screening. Cervical intraepithelial neoplasia (CIN) and squamous intraepithelial lesion (SIL) are two types of grading conventions widely accepted by pathologists. On the other hand, inter-observer variability is an important issue for final diagnosis. In this paper, a whole-slide image grading benchmark for cervical cancer precursor lesions is created and the "Uterine Cervical Cancer Database" introduced in this article is the first publicly available cervical tissue microscopy image dataset. In addition, a morphological feature representing the angle between the basal membrane (BM) and the major axis of each nucleus in the tissue is proposed. The presence of papillae of the cervical epithelium and overlapping cell problems are also discussed. Besides that, the inter-observer variability is also evaluated by thorough comparisons among decisions of pathologists, as well as the final diagnosis.


Assuntos
Displasia do Colo do Útero , Neoplasias do Colo do Útero , Benchmarking , Feminino , Humanos , Variações Dependentes do Observador
4.
J Neurosci Methods ; 346: 108946, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931810

RESUMO

BACKGROUND: The myelin sheath produced by glial cells insulates the axons, and supports the function of the nervous system. Myelin sheath degeneration causes neurodegenerative disorders, such as multiple sclerosis (MS). There are no therapies for MS that promote remyelination. Drug discovery frequently involves screening thousands of compounds. However, this is not feasible for remyelination drugs, since myelin quantification is a manual labor-intensive endeavor. Therefore, the development of assistive software for expedited myelin detection is instrumental for MS drug discovery by enabling high-content image-based drug screens. NEW METHOD: In this study, we developed a machine learning based expedited myelin detection approach in fluorescence microscopy images. Multi-channel three-dimensional microscopy images of a mouse stem cell-based myelination assay were labeled by experts. A spectro-spatial feature extraction method was introduced to represent local dependencies of voxels both in spatial and spectral domains. Feature extraction yielded two data set of over forty-seven thousand annotated images in total. RESULTS: Myelin detection performances of 23 different supervised machine learning techniques including a customized-convolutional neural network (CNN), were assessed using various train/test split ratios of the data sets. The highest accuracy values of 98.84±0.09% and 98.46±0.11% were achieved by Boosted Trees and customized-CNN, respectively. COMPARISON WITH EXISTING METHODS: Our approach can detect myelin in a common experimental setup. Myelin extending in any orientation in 3 dimensions is segmented from 3 channel z-stack fluorescence images. CONCLUSIONS: Our results suggest that the proposed expedited myelin detection approach is a feasible and robust method for remyelination drug screening.


Assuntos
Aprendizado de Máquina , Bainha de Mielina , Animais , Axônios , Camundongos , Microscopia de Fluorescência , Redes Neurais de Computação
5.
F1000Res ; 9: 1492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37990695

RESUMO

Myelin is an essential component of the nervous system and myelin damage causes demyelination diseases. Myelin is a sheet of oligodendrocyte membrane wrapped around the neuronal axon. In the fluorescent images, experts manually identify myelin by co-localization of oligodendrocyte and axonal membranes that fit certain shape and size criteria. Because myelin wriggles along x-y-z axes, machine learning is ideal for its segmentation. However, machine-learning methods, especially convolutional neural networks (CNNs), require a high number of annotated images, which necessitate expert labor. To facilitate myelin annotation, we developed a workflow and software for myelin ground truth extraction from multi-spectral fluorescent images. Additionally, to the best of our knowledge, for the first time, a set of annotated myelin ground truths for machine learning applications were shared with the community.


Assuntos
Aprendizado de Máquina , Bainha de Mielina , Redes Neurais de Computação , Axônios , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA