Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Dent Sci ; 19(1): 186-195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303845

RESUMO

Background/purpose: Skeletal orthodontic deformities can have functional and aesthetic consequences, making early detection critical. This study aimed to address the issue of parents bringing their children for routine orthodontic checkups after the ideal treatment age has passed. To address this, we developed a mobile application that uses machine-learning to make a preliminary diagnosis of skeletal malocclusion using just one photograph. Materials and methods: A retrospective study was conducted on 524 pre-pubertal children, aged between 5 and 12 years, to evaluate the accuracy of the machine learning based mobile application. The application detects multiple points in photographs taken from the mobile camera and generates a signal indicating the diagnosis of skeletal malocclusion. Results: The final accuracy of the Class III vs not Class III model deployed to the mobile application was above 81%, indicating its ability to accurately identify skeletal malocclusion. On a separate validation dataset of 145 patients diagnosed by 5 different clinicians, the accuracy of Class II vs Class I model was 69%; And pg 4, ln 61: as Class II vs Class I with 69% accuracy. Conclusion: The application provides parents with important information about the orthodontic problem, age of treatment, and various treatment options. This enables parents to seek further advice from an orthodontist at an earlier stage and make informed decisions. However, the diagnosis should still be confirmed by an orthodontist. This approach has the potential to improve access to orthodontic care, especially in underserved communities.

2.
Cancers (Basel) ; 16(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254834

RESUMO

For humans, the parallel processing capability of visual recognition allows for faster comprehension of complex scenes and patterns. This is essential, especially for clinicians interpreting big data for whom the visualization tools play an even more vital role in transforming raw big data into clinical decision making by managing the inherent complexity and monitoring patterns interactively in real time. The Cancer Genome Atlas (TCGA) database's size and data variety challenge the effective utilization of this valuable resource by clinicians and biologists. We re-analyzed the five molecular data types, i.e., mutation, transcriptome profile, copy number variation, miRNA, and methylation data, of ~11,000 cancer patients with all 33 cancer types and integrated the existing TCGA patient cohorts from the literature into a free and efficient web application: TCGAnalyzeR. TCGAnalyzeR provides an integrative visualization of pre-analyzed TCGA data with several novel modules: (i) simple nucleotide variations with driver prediction; (ii) recurrent copy number alterations; (iii) differential expression in tumor versus normal, with pathway and the survival analysis; (iv) TCGA clinical data including metastasis and survival analysis; (v) external subcohorts from the literature, curatedTCGAData, and BiocOncoTK R packages; (vi) internal patient clusters determined using an iClusterPlus R package or signature-based expression analysis of five molecular data types. TCGAnalyzeR integrated the multi-omics, pan-cancer TCGA with ~120 subcohorts from the literature along with clipboard panels, thus allowing users to create their own subcohorts, compare against existing external subcohorts (MSI, Immune, PAM50, Triple Negative, IDH1, miRNA, metastasis, etc.) along with our internal patient clusters, and visualize cohort-centric or gene-centric results interactively using TCGAnalyzeR.

3.
Front Oncol ; 12: 870487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795062

RESUMO

Follicular lymphoma (FL) is the second most frequent non-Hodgkin lymphoma accounting for 10-20% of all lymphomas in western countries. As a clinically heterogeneous cancer, FL occasionally undergoes histological transformation to more aggressive B cell lymphoma types that are associated with poor prognosis. Here we evaluated the potential of circulating cell-free DNA (cfDNA) to improve the diagnosis and prognosis of follicular lymphoma patients. Twenty well-characterized FL cases (13 symptomatic and 7 asymptomatic) were prospectively included in this study. Plasma cfDNA, formalin-fixed paraffin-embedded (FFPE) tumor tissue DNA, and patient-matched granulocyte genomic DNA samples were obtained from 20 treatment-naive FL cases. Ultra-deep targeted next-generation sequencing was performed with these DNA samples by using a custom-designed platform including exons and exon-intron boundaries of 110 FL related genes. Using a strict computational bioinformatics pipeline, we identified 91 somatic variants in 31 genes in treatment-naive FL cases. Selected variants were cross-validated by using PCR-Sanger sequencing. We observed higher concentrations of cfDNA and a higher overlap of somatic variants present both in cfDNA and tumor tissue DNA in symptomatic FL cases compared to asymptomatic ones. Variants known to be associated with FL pathogenesis such as STAT6 p.D419 or EZH2 p.Y646 were observed in patient-matched cfDNA and tumor tissue samples. Consistent with previous observations, high Ki-67 staining, elevated LDH levels, FDG PET/CT positivity were associated with poor survival. High plasma cfDNA concentrations or the presence of BCL2 mutations in cfDNA showed significant association with poor survival in treatment-naive patients. BCL2 mutation evaluations in cfDNA improved the prognostic utility of previously established variables. In addition, we observed that a FL patient who had progressive disease contained histological transformation-associated gene (i.e. B2M and BTG1) mutations only in cfDNA. Pre-treatment concentrations and genotype of plasma cfDNA may be used as a liquid biopsy to improve diagnosis, risk stratification, and prediction of histological transformation. Targeted therapies related to oncogenic mutations may be applied based on cfDNA genotyping results. However, the results of this study need to be validated in a larger cohort of FL patients as the analyses conducted in this study have an exploratory nature.

4.
Front Genet ; 12: 585556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747035

RESUMO

In recent years, a substantial number of tissue microbiome studies have been published, mainly due to the recent improvements in the minimization of microbial contamination during whole transcriptome analysis. Another reason for this trend is due to the capability of next-generation sequencing (NGS) to detect microbiome composition even in low biomass samples. Several recent studies demonstrate a significant role for the tissue microbiome in the development and progression of cancer and other diseases. For example, the increase of the abundance of Proteobacteria in tumor tissues of the breast has been revealed by gene expression analysis. The link between human papillomavirus infection and cervical cancer has been known for some time, but the relationship between the microbiome and breast cancer (BC) is more novel. There are also recent attempts to investigate the possible link between the brain microbiome and the cognitive dysfunction caused by neurological diseases. Such studies pointing to the role of the brain microbiome in Huntington's disease (HD) and Alzheimer's disease (AD) suggest that microbial colonization is a risk factor. In this review, we aim to summarize the studies that associate the tissue microbiome, rather than gut microbiome, with cancer and other diseases using whole-transcriptome analysis, along with 16S rRNA analysis. After providing several case studies for each relationship, we will discuss the potential role of transcriptome analysis on the broader portrayal of the pathophysiology of the breast, brain, and vaginal microbiome.

5.
J Pers Med ; 11(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672117

RESUMO

Lung cancer is the second most frequently diagnosed cancer type and responsible for the highest number of cancer deaths worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are subtypes of non-small-cell lung cancer which has the highest frequency of lung cancer cases. We aimed to analyze genomic and transcriptomic variations including simple nucleotide variations (SNVs), copy number variations (CNVs) and differential expressed genes (DEGs) in order to find key genes and pathways for diagnostic and prognostic prediction for lung adenocarcinoma and lung squamous cell carcinoma. We performed a univariate Cox model and then lasso-regularized Cox model with leave-one-out cross-validation using The Cancer Genome Atlas (TCGA) gene expression data in tumor samples. We generated 35- and 33-gene signatures for prognostic risk prediction based on the overall survival time of the patients with LUAD and LUSC, respectively. When we clustered patients into high- and low-risk groups, the survival analysis showed highly significant results with high prediction power for both training and test datasets. Then, we characterized the differences including significant SNVs, CNVs, DEGs, active subnetworks, and the pathways. We described the results for the risk groups and cancer subtypes separately to identify specific genomic alterations between both high-risk groups and cancer subtypes. Both LUAD and LUSC high-risk groups have more downregulated immune pathways and upregulated metabolic pathways. On the other hand, low-risk groups have both up- and downregulated genes on cancer-related pathways. Both LUAD and LUSC have important gene alterations such as CDKN2A and CDKN2B deletions with different frequencies. SOX2 amplification occurs in LUSC and PSMD4 amplification in LUAD. EGFR and KRAS mutations are mutually exclusive in LUAD samples. EGFR, MGA, SMARCA4, ATM, RBM10, and KDM5C genes are mutated only in LUAD but not in LUSC. CDKN2A, PTEN, and HRAS genes are mutated only in LUSC samples. The low-risk groups of both LUAD and LUSC tend to have a higher number of SNVs, CNVs, and DEGs. The signature genes and altered genes have the potential to be used as diagnostic and prognostic biomarkers for personalized oncology.

6.
BMC Bioinformatics ; 21(Suppl 14): 368, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998690

RESUMO

BACKGROUND: Lung cancer is the leading cause of the largest number of deaths worldwide and lung adenocarcinoma is the most common form of lung cancer. In order to understand the molecular basis of lung adenocarcinoma, integrative analysis have been performed by using genomics, transcriptomics, epigenomics, proteomics and clinical data. Besides, molecular prognostic signatures have been generated for lung adenocarcinoma by using gene expression levels in tumor samples. However, we need signatures including different types of molecular data, even cohort or patient-based biomarkers which are the candidates of molecular targeting. RESULTS: We built an R pipeline to carry out an integrated meta-analysis of the genomic alterations including single-nucleotide variations and the copy number variations, transcriptomics variations through RNA-seq and clinical data of patients with lung adenocarcinoma in The Cancer Genome Atlas project. We integrated significant genes including single-nucleotide variations or the copy number variations, differentially expressed genes and those in active subnetworks to construct a prognosis signature. Cox proportional hazards model with Lasso penalty and LOOCV was used to identify best gene signature among different gene categories. We determined a 12-gene signature (BCHE, CCNA1, CYP24A1, DEPTOR, MASP2, MGLL, MYO1A, PODXL2, RAPGEF3, SGK2, TNNI2, ZBTB16) for prognostic risk prediction based on overall survival time of the patients with lung adenocarcinoma. The patients in both training and test data were clustered into high-risk and low-risk groups by using risk scores of the patients calculated based on selected gene signature. The overall survival probability of these risk groups was highly significantly different for both training and test datasets. CONCLUSIONS: This 12-gene signature could predict the prognostic risk of the patients with lung adenocarcinoma in TCGA and they are potential predictors for the survival-based risk clustering of the patients with lung adenocarcinoma. These genes can be used to cluster patients based on molecular nature and the best candidates of drugs for the patient clusters can be proposed. These genes also have a high potential for targeted cancer therapy of patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/patologia , Genômica/métodos , Neoplasias Pulmonares/patologia , Transcriptoma , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Área Sob a Curva , Análise por Conglomerados , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Mapas de Interação de Proteínas/genética , Curva ROC , Fatores de Risco , Taxa de Sobrevida
7.
Bioinformatics ; 18(7): 1013-4, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12117801

RESUMO

UNLABELLED: CaGE is a Cardiac Gene Expression knowledgebase we have developed to facilitate the analysis of genes important to human cardiac function. CaGE integrates the functionality of the LocusLink database with data from several human cardiac expression libraries, phenotypic data from OMIM and data from large-scale microarray gene expression studies to create a knowledgebase of gene expression in human cardiac tissue. The knowledgebase is fully searchable via the web using several intuitive query interfaces. Results can be displayed in several concise easy to navigate formats. AVAILABILITY: CaGE is located at http://www.cage.wbmei.jhu.edu


Assuntos
Inteligência Artificial , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Expressão Gênica , Miocárdio/metabolismo , Humanos , Armazenamento e Recuperação da Informação/métodos , National Library of Medicine (U.S.) , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA