RESUMO
BACKGROUND: Several genetic susceptibility loci associated with diabetic nephropathy have been documented, but no causative variants implying novel pathogenetic mechanisms have been elucidated. METHODS: We carried out whole-genome sequencing of a discovery cohort of Finnish siblings with type 1 diabetes who were discordant for the presence (case) or absence (control) of diabetic nephropathy. Controls had diabetes without complications for 15-37 years. We analyzed and annotated variants at genome, gene, and single-nucleotide variant levels. We then replicated the associated variants, genes, and regions in a replication cohort from the Finnish Diabetic Nephropathy study that included 3531 unrelated Finns with type 1 diabetes. RESULTS: We observed protein-altering variants and an enrichment of variants in regions associated with the presence or absence of diabetic nephropathy. The replication cohort confirmed variants in both regulatory and protein-coding regions. We also observed that diabetic nephropathy-associated variants, when clustered at the gene level, are enriched in a core protein-interaction network representing proteins essential for podocyte function. These genes include protein kinases (protein kinase C isoforms ε and ι) and protein tyrosine kinase 2. CONCLUSIONS: Our comprehensive analysis of a diabetic nephropathy cohort of siblings with type 1 diabetes who were discordant for kidney disease points to variants and genes that are potentially causative or protective for diabetic nephropathy. This includes variants in two isoforms of the protein kinase C family not previously linked to diabetic nephropathy, adding support to previous hypotheses that the protein kinase C family members play a role in diabetic nephropathy and might be attractive therapeutic targets.
Assuntos
Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/genética , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Feminino , Células HEK293 , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Proteína Quinase C/fisiologia , Irmãos , Adulto Jovem , Peixe-ZebraRESUMO
The efficacy of islet transplantation for diabetes treatment suffers from lack of cadaver-derived islets, islet necrosis and long transfer times prior to transplantation. Here, we developed a method for culturing mouse and human islets in vitro on α5-laminins, which are natural components of islet basement membranes. Adhering islets spread to form layers of 1-3 cells in thickness and remained normoxic and functional for at least 7â¯days in culture. In contrast, spherical islets kept in suspension developed hypoxia and central necrosis within 16â¯h. Transplantation of 110-150 mouse islets cultured on α5-laminin-coated polydimethylsiloxane membranes for 3-7â¯days normalized blood glucose already within 3â¯days in mice with streptozotocin-induced diabetes. RNA-sequencing of isolated and cultured mouse islets provided further evidence for the adhesion and spreading achieved with α5-laminin. Our results suggest that use of such in vitro expanded islets may significantly enhance the efficacy of islet transplantation treatment for diabetes.
Assuntos
Técnicas de Cultura de Células , Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Laminina/química , Animais , Glicemia/metabolismo , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/cirurgia , Matriz Extracelular/química , Humanos , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/cirurgia , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina , Resultado do TratamentoRESUMO
AIMS/HYPOTHESIS: Diabetic nephropathy is a major diabetic complication, and diabetes is the leading cause of end-stage renal disease (ESRD). Family studies suggest a hereditary component for diabetic nephropathy. However, only a few genes have been associated with diabetic nephropathy or ESRD in diabetic patients. Our aim was to detect novel genetic variants associated with diabetic nephropathy and ESRD. METHODS: We exploited a novel algorithm, 'Bag of Naive Bayes', whose marker selection strategy is complementary to that of conventional genome-wide association models based on univariate association tests. The analysis was performed on a genome-wide association study of 3,464 patients with type 1 diabetes from the Finnish Diabetic Nephropathy (FinnDiane) Study and subsequently replicated with 4,263 type 1 diabetes patients from the Steno Diabetes Centre, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK collection (UK-Republic of Ireland) and the Genetics of Kidneys in Diabetes US Study (GoKinD US). RESULTS: Five genetic loci (WNT4/ZBTB40-rs12137135, RGMA/MCTP2-rs17709344, MAPRE1P2-rs1670754, SEMA6D/SLC24A5-rs12917114 and SIK1-rs2838302) were associated with ESRD in the FinnDiane study. An association between ESRD and rs17709344, tagging the previously identified rs12437854 and located between the RGMA and MCTP2 genes, was replicated in independent case-control cohorts. rs12917114 near SEMA6D was associated with ESRD in the replication cohorts under the genotypic model (p < 0.05), and rs12137135 upstream of WNT4 was associated with ESRD in Steno. CONCLUSIONS/INTERPRETATION: This study supports the previously identified findings on the RGMA/MCTP2 region and suggests novel susceptibility loci for ESRD. This highlights the importance of applying complementary statistical methods to detect novel genetic variants in diabetic nephropathy and, in general, in complex diseases.
Assuntos
Nefropatias Diabéticas/genética , Loci Gênicos , Predisposição Genética para Doença , Falência Renal Crônica/genética , Adulto , Teorema de Bayes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genéticaRESUMO
AIMS/HYPOTHESIS: An abnormal urinary albumin excretion rate (AER) is often the first clinically detectable manifestation of diabetic nephropathy. Our aim was to estimate the heritability and to detect genetic variation associated with elevated AER in patients with type 1 diabetes. METHODS: The discovery phase genome-wide association study (GWAS) included 1,925 patients with type 1 diabetes and with data on 24 h AER. AER was analysed as a continuous trait and the analysis was stratified by the use of antihypertensive medication. Signals with a p value <10(-4) were followed up in 3,750 additional patients with type 1 diabetes from seven studies. RESULTS: The narrow-sense heritability, captured with our genotyping platform, was estimated to explain 27.3% of the total AER variability, and 37.6% after adjustment for covariates. In the discovery stage, five single nucleotide polymorphisms in the GLRA3 gene were strongly associated with albuminuria (p < 5 × 10(-8)). In the replication group, a nominally significant association (p = 0.035) was observed between albuminuria and rs1564939 in GLRA3, but this was in the opposite direction. Sequencing of the surrounding genetic region in 48 Finnish and 48 UK individuals supported the possibility that population-specific rare variants contribute to the synthetic association observed at the common variants in GLRA3. The strongest replication (p = 0.026) was obtained for rs2410601 between the PSD3 and SH2D4A genes. Pathway analysis highlighted natural killer cell mediated immunity processes. CONCLUSIONS/INTERPRETATION: This study suggests novel pathways and molecular mechanisms for the pathogenesis of albuminuria in type 1 diabetes.
Assuntos
Albuminúria/genética , Diabetes Mellitus Tipo 1/urina , Estudo de Associação Genômica Ampla/métodos , Adulto , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
We have previously reported genetic association of a single nucleotide polymorphism (SNP), rs1866813, at 3q locus with increased risk of diabetic nephropathy (DN). The SNP is located approximately 70 kb downstream of a cluster of four genes. This raises a question how the remote noncoding polymorphism affects the risk of DN. In this study, we tested a long-range regulatory potential of this variant by a series of experiments. In a luciferase assay, two alleles of the SNP showed differential effects on the luciferase activity in transfected cells in vitro. Using transgenic zebrafish, we further demonstrated in vivo that two alleles of the SNP differentially regulated GFP expression in zebrafish podocytes. Immunofluorescence staining and Western blotting verified that only Nck1 of the four nearby genes was predominantly expressed in mouse glomeruli as well as in podocytes. Furthermore, genotypes of the SNP rs1866813 were correlated with NCK1 expression in immortalized lymphocytes from diabetic patients. The risk allele was associated with increased NCK1 expression compared to the non-risk allele, consistent with the results of the reporter-based studies. Interestingly, differential expression of glomerular Nck1 between mouse strains carrying the nephropathy-prone 129/Sv allele and nephropathy-resistant C57BL/6 allele was also observed. Our results show that the DN-associated SNP rs1866813 is a remote cis-acting variant differentially regulating glomerular NCK1 expression. This finding implicates an important role for glomerular NCK1 in DN pathogenesis under hyperglycemia.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromossomos Humanos Par 3 , Nefropatias Diabéticas/genética , Variação Genética , Glomérulos Renais/metabolismo , Proteínas Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico , Animais , Animais Geneticamente Modificados , Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Genes Reporter , Genótipo , Humanos , Glomérulos Renais/patologia , Camundongos , Polimorfismo de Nucleotídeo Único , Peixe-ZebraRESUMO
Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 × 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 × 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-ß1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
Assuntos
Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Receptores ErbB/genética , Falência Renal Crônica , Proteínas Nucleares/genética , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Fibrose/genética , Fibrose/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Falência Renal Crônica/etiologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Receptor ErbB-4 , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismoRESUMO
We formed the GEnetics of Nephropathy-an International Effort (GENIE) consortium to examine previously reported genetic associations with diabetic nephropathy (DN) in type 1 diabetes. GENIE consists of 6,366 similarly ascertained participants of European ancestry with type 1 diabetes, with and without DN, from the All Ireland-Warren 3-Genetics of Kidneys in Diabetes U.K. and Republic of Ireland (U.K.-R.O.I.) collection and the Finnish Diabetic Nephropathy Study (FinnDiane), combined with reanalyzed data from the Genetics of Kidneys in Diabetes U.S. Study (U.S. GoKinD). We found little evidence for the association of the EPO promoter polymorphism, rs161740, with the combined phenotype of proliferative retinopathy and end-stage renal disease in U.K.-R.O.I. (odds ratio [OR] 1.14, P = 0.19) or FinnDiane (OR 1.06, P = 0.60). However, a fixed-effects meta-analysis that included the previously reported cohorts retained a genome-wide significant association with that phenotype (OR 1.31, P = 2 × 10(-9)). An expanded investigation of the ELMO1 locus and genetic regions reported to be associated with DN in the U.S. GoKinD yielded only nominal statistical significance for these loci. Finally, top candidates identified in a recent meta-analysis failed to reach genome-wide significance. In conclusion, we were unable to replicate most of the previously reported genetic associations for DN, and significance for the EPO promoter association was attenuated.
Assuntos
Diabetes Mellitus Tipo 1/epidemiologia , Nefropatias Diabéticas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/epidemiologia , Eritropoetina/genética , Finlândia/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Irlanda/epidemiologia , Falência Renal Crônica/genética , Fenótipo , Regiões Promotoras Genéticas/genética , Estados Unidos/epidemiologia , População Branca/genéticaRESUMO
Diabetic nephropathy (DN) is the primary cause of morbidity and mortality in patients with type 1 diabetes mellitus (T1DM) and affects about 30% of these patients. We have previously localized a DN locus on chromosome 3q with suggestive linkage in Finnish individuals. Linkage to this region has also been reported earlier by several other groups. To fine map this locus, we conducted a multistage case-control association study in T1DM patients, comprising 1822 cases with nephropathy and 1874 T1DM patients free of nephropathy, from Finland, Iceland, and the British Isles. At the screening stage, we genotyped 3072 tag SNPs, spanning a 28 Mb region, in 234 patients and 215 controls from Finland. SNPs that met the significance threshold of p < 0.01 at this stage were followed up by a series of sample sets. A genetic variant, rs1866813, in the noncoding region at 3q22 was associated with increased risk of DN (overall p = 7.07 x 10(-6), combined odds ratio [OR] of the allele = 1.33). The estimated genotypic ORs of this variant in all Finnish samples suggested a codominant effect, resulting in significant association, with a p value of 4.7 x 10(-5) (OR = 1.38; 95% confidence interval = 1.18-1.62). Additionally, an 11 kb segment flanked by rs62408925 and rs1866813, two strongly correlated variants (r(2) = 0.95), contains three elements highly conserved across multiple species. Independent replication will clarify the role of the associated variants at 3q22 in influencing the risk of DN.
Assuntos
Cromossomos Humanos Par 3/genética , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/genética , Adulto , Idoso , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/complicações , Feminino , Ligação Genética , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: A genome-wide search for genes that predispose to type 1 diabetes using linkage analysis was performed using 900 microsatellite markers in 70 nuclear families with affected siblings from Finland, a population expected to be more genetically homogeneous than others, and having the highest incidence of type 1 diabetes in the world and, yet, the highest proportion in Europe of cases (10%) carrying neither of the highest risk HLA haplotypes that include DR3 or DR4 alleles. RESULTS: In addition to the evidence of linkage to the HLA region on 6p21 (nominal p = 4.0 x 10-6), significant evidence of linkage in other chromosome regions was not detected with a single-locus analysis. The two-locus analysis conditional on the HLA gave a maximum lod score (MLS) of 3.1 (nominal p = 2 x 10-4) on chromosome 9p13 under an additive model; MLS of 2.1 (nominal p = 6.1 x 10-3) on chromosome 17p12 and MLS of 2.5 (nominal p = 2.9 x 10-3) on chromosome 18p11 under a general model. CONCLUSION: Our genome scan data confirmed the primary contribution of the HLA genes also in the high-risk Finnish population, and suggest that non-HLA genes also contribute to the familial clustering of type 1 diabetes in Finland.