Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1194-1209, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189740

RESUMO

S1 nuclease from Aspergillus oryzae is a single-strand-specific nuclease from the S1/P1 family that is utilized in biochemistry and biotechnology. S1 nuclease is active on both RNA and DNA but with differing catalytic efficiencies. This study clarifies its catalytic properties using a thorough comparison of differences in the binding of RNA and DNA in the active site of S1 nuclease based on X-ray structures, including two newly solved complexes of S1 nuclease with the products of RNA cleavage at atomic resolution. Conclusions derived from this comparison are valid for the whole S1/P1 nuclease family. For proper model building and refinement, multiple lattice-translocation defects present in the measured diffraction data needed to be solved. Two different approaches were tested and compared. Correction of the measured intensities proved to be superior to the use of the dislocation model of asymmetric units with partial occupancy of individual chains. As the crystals suffered from multiple lattice translocations, equations for their correction were derived de novo. The presented approach to the correction of multiple lattice-translocation defects may help to solve similar problems in the field of protein X-ray crystallography.


Assuntos
Aspergillus oryzae , RNA , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Domínio Catalítico , DNA , Endonucleases/química , RNA/metabolismo
2.
Biotechnol Biofuels ; 14(1): 51, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33640002

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) are important industrial enzymes known for their catalytic degradation of recalcitrant polymers such as cellulose or chitin. Their activity can be measured by lengthy HPLC methods, while high-throughput methods are less specific. A fast and specific LPMO assay would simplify screening for new or engineered LPMOs and accelerate biochemical characterization. RESULTS: A novel LPMO activity assay was developed based on the production of the dye phenolphthalein (PHP) from its reduced counterpart (rPHP). The colour response of rPHP oxidisation catalysed by the cellulose-specific LPMO from Thermoascus aurantiacus (TaAA9A), was found to increase tenfold by adding dehydroascorbate (DHA) as a co-substrate. The assay using a combination of rPHP and DHA was tested on 12 different metallo-enzymes, but only the LPMOs catalysed this reaction. The assay was optimized for characterization of TaAA9A and showed a sensitivity of 15 nM after 30 min incubation. It followed apparent Michaelis-Menten kinetics with kcat = 0.09 s-1 and KM = 244 µM, and the assay was used to confirm stoichiometric copper-enzyme binding and enzyme unfolding at a temperature of approximately 60 °C. DHA, glutathione and fructose were found to enhance LPMO oxidation of rPHP and in the optimized assay conditions these co-substrates also enabled cellulose degradation. CONCLUSIONS: This novel and specific LPMO assay can be carried out in a convenient microtiter plate format ready for high-throughput screening and enzyme characterization. DHA was the best co-substrate tested for oxidation of rPHP and this preference appears to be LPMO-specific. The identified co-substrates DHA and fructose are not normally considered as LPMO co-substrates but here they are shown to facilitate both oxidation of rPHP and degradation of cellulose. This is a rare example of a finding from a high-throughput assay that directly translate into enzyme activity on an insoluble substrate. The rPHP-based assay thus expands our understanding of LPMO catalysed reactions and has the potential to characterize LPMO activity in industrial settings, where usual co-substrates such as ascorbate and oxygen are depleted.

3.
N Engl J Med ; 384(14): 1301-1311, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33471452

RESUMO

BACKGROUND: Patients with acute hypoxemic respiratory failure in the intensive care unit (ICU) are treated with supplemental oxygen, but the benefits and harms of different oxygenation targets are unclear. We hypothesized that using a lower target for partial pressure of arterial oxygen (Pao2) would result in lower mortality than using a higher target. METHODS: In this multicenter trial, we randomly assigned 2928 adult patients who had recently been admitted to the ICU (≤12 hours before randomization) and who were receiving at least 10 liters of oxygen per minute in an open system or had a fraction of inspired oxygen of at least 0.50 in a closed system to receive oxygen therapy targeting a Pao2 of either 60 mm Hg (lower-oxygenation group) or 90 mm Hg (higher-oxygenation group) for a maximum of 90 days. The primary outcome was death within 90 days. RESULTS: At 90 days, 618 of 1441 patients (42.9%) in the lower-oxygenation group and 613 of 1447 patients (42.4%) in the higher-oxygenation group had died (adjusted risk ratio, 1.02; 95% confidence interval, 0.94 to 1.11; P = 0.64). At 90 days, there was no significant between-group difference in the percentage of days that patients were alive without life support or in the percentage of days they were alive after hospital discharge. The percentages of patients who had new episodes of shock, myocardial ischemia, ischemic stroke, or intestinal ischemia were similar in the two groups (P = 0.24). CONCLUSIONS: Among adult patients with acute hypoxemic respiratory failure in the ICU, a lower oxygenation target did not result in lower mortality than a higher target at 90 days. (Funded by the Innovation Fund Denmark and others; HOT-ICU ClinicalTrials.gov number, NCT03174002.).


Assuntos
Oxigenoterapia/métodos , Oxigênio/administração & dosagem , Oxigênio/sangue , Insuficiência Respiratória/terapia , Idoso , Feminino , Humanos , Hipóxia/sangue , Hipóxia/etiologia , Hipóxia/terapia , Unidades de Terapia Intensiva , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/sangue , Insuficiência Respiratória/complicações , Insuficiência Respiratória/mortalidade
4.
Sci Rep ; 9(1): 13700, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548583

RESUMO

Unlike any protein studied so far, the active site of bilirubin oxidase from Myrothecium verrucaria contains a unique type of covalent link between tryptophan and histidine side chains. The role of this post-translational modification in substrate binding and oxidation is not sufficiently understood. Our structural and mutational studies provide evidence that this Trp396-His398 adduct modifies T1 copper coordination and is an important part of the substrate binding and oxidation site. The presence of the adduct is crucial for oxidation of substituted phenols and it substantially influences the rate of oxidation of bilirubin. Additionally, we bring the first structure of bilirubin oxidase in complex with one of its products, ferricyanide ion, interacting with the modified tryptophan side chain, Arg356 and the active site-forming loop 393-398. The results imply that structurally and chemically distinct types of substrates, including bilirubin, utilize the Trp-His adduct mainly for binding and to a smaller extent for electron transfer.


Assuntos
Bilirrubina/metabolismo , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Sítios de Ligação , Transporte de Elétrons/fisiologia , Hypocreales/metabolismo , Oxirredução , Ligação Proteica/fisiologia , Conformação Proteica
5.
PLoS One ; 13(11): e0206589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395580

RESUMO

Laccases of different biological origins have been widely investigated and these studies have elucidated fundamentals of the generic catalytic mechanism. However, other features such as surface properties and residues located away from the catalytic centres may also have impact on enzyme function. Here we present the crystal structure of laccase from Myceliophthora thermophila (MtL) to a resolution of 1.62 Å together with a thorough structural comparison with other members of the CAZy family AA1_3 that comprises fungal laccases from ascomycetes. The recombinant protein produced in A. oryzae has a molecular mass of 75 kDa, a pI of 4.2 and carries 13.5 kDa N-linked glycans. In the crystal, MtL forms a dimer with the phenolic substrate binding pocket blocked, suggesting that the active form of the enzyme is monomeric. Overall, the MtL structure conforms with the canonical fold of fungal laccases as well as the features specific for the asco-laccases. However, the structural comparisons also reveal significant variations within this taxonomic subgroup. Notable differences in the T1-Cu active site topology and polar motifs imply molecular evolution to serve different functional roles. Very few surface residues are conserved and it is noticeable that they encompass residues that interact with the N-glycans and/or are located at domain interfaces. The N-glycosylation sites are surprisingly conserved among asco-laccases and in most cases the glycan displays extensive interactions with the protein. In particular, the glycans at Asn88 and Asn210 appear to have evolved as an integral part of the asco-laccase structure. An uneven distribution of the carbohydrates around the enzyme give unique properties to a distinct part of the surface of the asco-laccases which may have implication for laccase function-in particular towards large substrates.


Assuntos
Proteínas Fúngicas/química , Lacase/química , Sordariales/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosilação , Lacase/genética , Lacase/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sordariales/genética , Propriedades de Superfície
6.
PLoS One ; 11(12): e0168832, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28036383

RESUMO

The single-strand-specific S1 nuclease from Aspergillus oryzae is an archetypal enzyme of the S1-P1 family of nucleases with a widespread use for biochemical analyses of nucleic acids. We present the first X-ray structure of this nuclease along with a thorough analysis of the reaction and inhibition mechanisms and of its properties responsible for identification and binding of ligands. Seven structures of S1 nuclease, six of which are complexes with products and inhibitors, and characterization of catalytic properties of a wild type and mutants reveal unknown attributes of the S1-P1 family. The active site can bind phosphate, nucleosides, and nucleotides in several distinguished ways. The nucleoside binding site accepts bases in two binding modes-shallow and deep. It can also undergo remodeling and so adapt to different ligands. The amino acid residue Asp65 is critical for activity while Asn154 secures interaction with the sugar moiety, and Lys68 is involved in interactions with the phosphate and sugar moieties of ligands. An additional nucleobase binding site was identified on the surface, which explains the absence of the Tyr site known from P1 nuclease. For the first time ternary complexes with ligands enable modeling of ssDNA binding in the active site cleft. Interpretation of the results in the context of the whole S1-P1 nuclease family significantly broadens our knowledge regarding ligand interaction modes and the strategies of adjustment of the enzyme surface and binding sites to achieve particular specificity.


Assuntos
Aspergillus oryzae/enzimologia , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Sítios de Ligação/fisiologia , Catálise , Domínio Catalítico/fisiologia , Cinética , Alinhamento de Sequência , Especificidade por Substrato
7.
Chembiochem ; 14(10): 1209-11, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23775916

RESUMO

Small but faster: A small laccase from Streptomyces coelicolor (SLAC) has been engineered by structure-based design and site-directed mutagenesis to improve the activity on commercially relevant substrates. The variants generated showed up to 40-fold increased efficiency on 2,6-dimethoxyphenol and the ability to use mediators with considerably higher redox potentials (methylsyringate and TEMPO).


Assuntos
Lacase/química , Lacase/metabolismo , Biotransformação , Domínio Catalítico , Modelos Moleculares , Engenharia de Proteínas , Especificidade por Substrato
8.
Artigo em Inglês | MEDLINE | ID: mdl-23545636

RESUMO

The bacterial enzyme organophosphorus acid anhydrolase (OPAA) is able to catalyze the hydrolysis of both proline dipeptides (Xaa-Pro) and several types of organophosphate (OP) compounds. The full three-dimensional structure of the manganese-dependent OPAA enzyme is presented for the first time. This enzyme, which was originally isolated from the marine bacterium Alteromonas macleodii, was prepared recombinantly in Escherichia coli. The crystal structure was determined at 1.8 Å resolution in space group C2, with unit-cell parameters a = 133.8, b = 49.2, c = 97.3 Å, ß = 125.0°. The enzyme forms dimers and their existence in solution was confirmed by dynamic light scattering and size-exclusion chromatography. The enzyme shares the pita-bread fold of its C-terminal domain with related prolidases. The binuclear manganese centre is located in the active site within the pita-bread domain. Moreover, an Ni(2+) ion from purification was localized according to anomalous signal. This study presents the full structure of this enzyme with complete surroundings of the active site and provides a critical analysis of its relationship to prolidases.


Assuntos
Alteromonas/enzimologia , Arildialquilfosfatase/química , Dipeptidases/química , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
9.
Biochemistry ; 41(8): 2719-26, 2002 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-11851419

RESUMO

Multiple ketoreductase activities play a crucial role in establishing the stereochemistry of the products of modular polyketide synthases (PKSs), but there has been little systematic scrutiny of catalysis by individual ketoreductases. To allow this, a diketide synthase, consisting of the loading module, first extension module, and the chain-terminating thioesterase of the erythromycin-producing PKS of Saccharopolyspora erythraea, has been expressed and purified. The DNA encoding the ketoreductase-1 domain in this construct is flanked by unique restriction sites so that another ketoreductase domain can be readily substituted. The purified recombinant diketide synthase catalyzes, at a very low rate (k(cat) equals 2.5 x 10(-3) s(-1)), the specific production of the diketide (2S,3R)-2-methyl-3-hydroxypentanoic acid. The activity of the ketoreductase domain in this model synthase was analyzed using as a model substrate (+/-)-2-methyl-3-oxopentanoic acid N-acetylcysteaminyl (NAC) ester for which k(cat)/K(m) was 21.7 M(-1) s(-1). The NAC thioester of (2S,3R)-2-methyl-3-hydroxypentanoic acid was the major product and was strongly preferred over other stereoisomers as a substrate in the reverse reaction. The bicyclic ketone (9RS)-trans-1-decalone, a known substrate for ketoreductase in fatty acid synthase, was found also to be an effective substrate for the ketoreductase of the diketide synthase. Only the (9R)-trans-1-decalone was reduced, selectively and reversibly, to the (1S,9R)-trans-decalol. The stereochemical course of reduction and oxidation is exactly as found previously for the ketoreductase of animal fatty acid synthase, an additional indication of the close similarity of these enzymes.


Assuntos
Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Catálise , Cromatografia em Gel , Hidrólise , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Oxirredução , Oxirredutases/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharopolyspora/enzimologia , Estereoisomerismo , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA