Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6599, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503813

RESUMO

The efficient dirubidium cobalt bis(dihydrogendiphosphate) dihydrate compound is successfully synthesized in a solution and used as a reactive sorbent for the CO2 and CH4 gases adsorption and storage. A crystal of this Rb2Co(H2P2O7)2·2H2O compound has been isolated and characterized by single X-ray diffraction analysis and was found to crystallize in the triclinic system ( P 1 ¯ ) with the cell parameters (Å): 6.980(1), 7.370(1), 7.816(1), 81.74(1), 70.35(1), 86.34(1); V = 374.68(9) Å3, Z = 2. The crystal-packing consists of a three-dimensional framework made upon corners and edges sharing of [RbO7], [H2P2O7] and [CoO6] entities, furthermore linked by a network of H-bonds. The UV-Vis spectroscopy revealed usual transitions between the ground state 4T1g and the upper levels 4T2g, 4A2g and 4T1g (P). Moreover, the CO2 and CH4 gases sorption measurements were successfully performed at two different temperatures (25 and 45 °C) and various pressures ranging from vacuum to 50 bar. Our results show that rate of CO2 and CH4 capturing was 3.10 mmol/g and 2.35 mmol/g at temperature 25 °C and pressure 50 bar, respectively. This compound showed a clear potential for CO2/CH4 adsorption and storage thereby paving the way towards its exploration and adaptation for capturing and collecting carbon dioxide and greenhouse gases from the air, and their conversion into hydrocarbon fuels using existing mature technologies. We have also conducted density functional theory calculations to study the CO2 and CH4 adsorption properties of Rb2Co(H2P2O7)2·2H2O. The simulation results show enhanced adsorption of both types of molecules on the surface of the material.

2.
Sci Rep ; 13(1): 9100, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277370

RESUMO

The perovskite solar cells (PSCs) are still facing the two main challenges of stability and scalability to meet the requirements for their potential commercialization. Therefore, developing a uniform, efficient, high quality and cost-effective electron transport layer (ETL) thin film to achieve a stable PSC is one of the key factors to address these main issues. Magnetron sputtering deposition has been widely used for its high quality thin film deposition as well as its ability to deposit films uniformly on large area at the industrial scale. In this work, we report on the composition, structural, chemical state, and electronic properties of moderate temperature radio frequency (RF) sputtered SnO2. Ar and O2 are employed as plasma-sputtering and reactive gases, respectively. We demonstrate the possibility to grow a high quality and stable SnO2 thin films with high transport properties by reactive RF magnetron sputtering. Our findings show that PSC devices based on the sputtered SnO2 ETL have reached a power conversion efficiency up to 17.10% and an average operational lifetime over 200 h. These uniform sputtered SnO2 thin films with improved characteristics are promising for large photovoltaic modules and advanced optoelectronic devices.

3.
Sci Rep ; 12(1): 15294, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097272

RESUMO

In the present work, we report on the microstructural and optoelectronic properties of SnOx thin films deposited by a reactive radio frequency magnetron sputtering. After SnOx growth by sputtering under O2/Ar flow, we have used three different treatment methods, namely (1) as deposited films under O2/Ar, (2) vacuum annealed films ex-situ, and (3) air annealed films ex-situ. Effects of the O2/Ar ratios and the growth temperature were investigated for each treatment method. We have thoroughly investigated the structural, optical, electrical and morphology of the different films by several advanced techniques. The best compromise between electrical conductivity and optical transmission for the use of these SnOx films as an n-type TCO was the conditions O2/Ar = 1.5% during the growth process, at 250 °C, followed by a vacuum post thermal annealing performed at 5 × 10-4 Torr. Our results pointed out clear correlations between the growth conditions, the microstructural and optoelectronic properties, where highly electrically conductive films were found to be associated to larger grains size microstructure. Effects of O2/Ar flow and the thermal annealing process were also analysed and discussed thoroughly.

4.
Nanotechnology ; 31(7): 075201, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31661677

RESUMO

We report on the fabrication and transport properties of single-walled carbon nanotubes (SWCNT) blended with P3HT (poly 3-hexyl thiophene-2, 5-diyl). The composite is used as a hybrid organic active channel transistor. The performances of the fabricated devices were investigated as a function of the SWCNTs' loads in the composite, and their response evaluated under white light illumination. Our results show that for SWCNT loads ≤1.5 wt%, all the devices behave as p-type transistors, exhibiting excellent performance, with an I on /I off ratio of 104 and a maximum on-state current (I on) exceeding 80 µA. Moreover, compared with pristine transistors with a P3HT channel, the Hall mobility of these hybrid TFTs was found to increase by more than one order of magnitude, i.e. increasing from 0.062 to 1.54 cm2 V-1 s-1. Finally, under light illumination, the transfer characteristics (i.e. I DS as a function of V GS) were found to systematically undergo a typical shift together with a fully-reversible memory behavior. A fundamental understanding of this work can assist in providing new routes for the development of reliable efficient hybrid organic-based optoelectronic devices.

5.
Nanoscale ; 9(37): 14192-14200, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28905954

RESUMO

Materials offering excellent mechanical flexibility, high electrical conductivity and electromagnetic interference (EMI) attenuation with minimal thickness are in high demand, particularly if they can be easily processed into films. Carbon nanotube films deposited on a PDMS substrate combine these requirements. In this work, the potential of single wall carbon nanotubes (SWCNT) deposited on flexible polydimethylsiloxane (PDMS) polymer substrates for EMI attenuation is demonstrated. A 6-micrometer-thick SWCNT film exhibits EMI shielding effectiveness of 24.5 decibels in the extreme high frequency band (EHF), reaching 40 decibels when the SWCNTs are N-doped, which is one of the highest specific EMI attenuation performances optimized with film thickness realized to date. This performance stems from the good electrical conductivity of N-SWCNT films (150 Siemens per centimeter) and possible internal multireflections within the SWCNTs network. The excellent mechanical flexibility and easy coating processing enable them to sheathe complex shaped surfaces while providing high electromagnetic interference attenuation efficiency.

6.
Nanotechnology ; 23(11): 115705, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22382044

RESUMO

We report on the fabrication and transport properties of single-walled carbon nanotube (SWCNT)/polyurethane (PU) nanocomposite microfiber-based field effect transistors (FETs). UV-assisted direct-writing technology was used, and microfibers consisting of cylindrical micro-rods, having different diameters and various SWCNT loads, were fabricated directly onto SiO2/Si substrates in a FET scheme. The room temperature dc electrical conductivities of these microfibers were shown to increase with respect to the SWCNT concentrations in the nanocomposite, and were about ten orders of magnitude higher than that of the pure polyurethane, when the SWCNT load ranged from 0.1 to 2.5 wt% only. Our results show that for SWCNT loads ≤ 1.5 wt%, all the microfibers behave as a FET with p-type transport. The resulting FET exhibited excellent performance, with an I(on)/I(off) ratio of 105 and a maximum on-state current (I(on)) exceeding 70 µA. Correlations between the FET performance, SWCNTs concentration, and the microfiber diameters are also discussed.

7.
Nanotechnology ; 20(17): 175203, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19420587

RESUMO

We report on the electrical performance of field effect transistor (FET) nanodevices based on suspended single-wall carbon nanotubes (SWCNTs) grown by our 'all-laser' synthesis process. The attractiveness of the proposed approach lies in the combination of standard microfabrication processing with the in situ 'all-laser' localized growth of SWCNTs, offering an affordable way of directly integrating SWCNTs into nanodevices. The 'all-laser' process uses the same KrF excimer laser (248 nm), first, to deposit the nanocatalyzed electrodes and, in a second step, to grow the SWCNTs in a suspended geometry, achieving thereby the lateral bridging of the electrodes. The nanocatalyzed electrodes consist of a multilayer stack sandwiching a catalyst nanolayer ( approximately 5 nm thick) composed of Co/Ni nanoparticles. The 'all-laser' grown SWCNTs ( approximately 1 nm diameter) are most often seen to self-assemble into bundles (10-20 nm diameter) and to bridge laterally the various gap lengths (in the 2-10 microm investigation range) separating adjacent electrodes. The suspended-SWCNT-based FETs were found to behave as p-type transistors, in air and at room temperature, with very high ON/OFF switching ratios (whose magnitude markedly increases as the active channel length is reduced). For the shortest gap (i.e. 2 microm), the suspended-SWCNT-based FETs exhibited not only an ON/OFF switching ratio in excess of seven orders of magnitude, but also an ON-state conductance as high as 3.26 microS. Their corresponding effective carrier mobility was estimated (at V(SD) = 100 mV) to a value of approximately 4000 cm(2) V(-1) s(-1), which is almost ten times higher than the hole mobility in single-crystal silicon at room temperature.

8.
J Nanosci Nanotechnol ; 7(10): 3394-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18330146

RESUMO

Single-wall carbon nanotubes (SWCNTs) were laterally grown on SiO2/Si substrates by means of an "all-laser" growth process. Our "all-laser" process stands out by its exclusive use of the same pulsed UV laser, first, to deposit the CoNi nanocatalyst and, second, to grow SWCNTs through the laser ablation of a pure graphite target. The "all-laser" grown SWCNTs generally self-assemble into bundles (5-15 nm-diam.) sprouting from the CoNi nanocatalyst and laterally bridging the 2 microm gap separating adjacent catalysed electrodes (in either "suspended" or "on-substrate" geometries). A comparative study of the oxidation resistance of both suspended and on-substrate SWCNTs was achieved. The "all-laser" grown SWCNTs were subjected to annealing under flowing oxygen at temperatures ranging from 200 to 1100 degrees C. Systematic scanning electron microscopy observations combined with micro-Raman analyses revealed that more than 20% of suspended nanotubes were still stable at temperatures as high as 900 degrees C under flowing O2 while the on-substrate counterpart were completely burnt out at this temperature. Accordingly, the activation energy, as deduced from the Arrhenius plot, of the suspended SWCNTs is found to be as high as approximately 180 kJ mol(-1) (approximately 9 times higher than that of the on-substrate ones). The high quality (almost defect-free) of the nanotubes synthesized by the "all-laser" approach, their protected tips into the embedded CoNi catalyst nanolayer together with their suspended geometry are thought to be responsible for their unprecedented ultra-high oxidation resistance. This opens up new prospects for the use of these suspended nanotubes into nanodevices that have to operate under highly oxidizing environments.


Assuntos
Cristalização/métodos , Lasers , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA