Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Lancet Microbe ; 5(5): e478-e488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614111

RESUMO

BACKGROUND: Regular quality-assured whole-genome sequencing linked to antimicrobial resistance (AMR) and patient metadata is imperative to elucidate the shifting gonorrhoea epidemiology, both nationally and internationally. We aimed to examine the gonococcal population in the European Economic Area (EEA) in 2020, elucidate emerging and disappearing gonococcal lineages associated with AMR and patient metadata, compare with 2013 and 2018 whole-genome sequencing data, and explain changes in gonococcal AMR and gonorrhoea epidemiology. METHODS: In this retrospective genomic surveillance study, we analysed consecutive gonococcal isolates that were collected in EEA countries through the European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) in 2020, and made comparisons with Euro-GASP data from 2013 and 2018. All isolates had linked AMR data (based on minimum inhibitory concentration determination) and patient metadata. We performed whole-genome sequencing and molecular typing and AMR determinants were derived from quality-checked whole-genome sequencing data. Links between genomic lineages, AMR, and patient metadata were examined. FINDINGS: 1932 gonococcal isolates collected in 2020 in 21 EEA countries were included. The majority (81·2%, 147 of 181 isolates) of azithromycin resistance (present in 9·4%, 181 of 1932) was explained by the continued expansion of the Neisseria gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) clonal complexes (CCs) 63, 168, and 213 (with mtrD/mtrR promoter mosaic 2) and the novel NG-STAR CC1031 (semi-mosaic mtrD variant 13), associated with men who have sex with men and anorectal or oropharyngeal infections. The declining cefixime resistance (0·5%, nine of 1932) and negligible ceftriaxone resistance (0·1%, one of 1932) was largely because of the progressive disappearance of NG-STAR CC90 (with mosaic penA allele), which was predominant in 2013. No known resistance determinants for novel antimicrobials (zoliflodacin, gepotidacin, and lefamulin) were found. INTERPRETATION: Azithromycin-resistant clones, mainly with mtrD mosaic or semi-mosaic variants, appear to be stabilising at a relatively high level in the EEA. This mostly low-level azithromycin resistance might threaten the recommended ceftriaxone-azithromycin therapy, but the negligible ceftriaxone resistance is encouraging. The decreased genomic population diversity and increased clonality could be explained in part by the COVID-19 pandemic resulting in lower importation of novel strains into Europe. FUNDING: European Centre for Disease Prevention and Control and Örebro University Hospital.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Gonorreia , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae , Sequenciamento Completo do Genoma , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/genética , Humanos , Estudos Retrospectivos , Europa (Continente)/epidemiologia , Gonorreia/epidemiologia , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Feminino , Adulto , Genoma Bacteriano/genética , Pessoa de Meia-Idade , Adulto Jovem , Genômica , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Adolescente
3.
Clin Infect Dis ; 77(Suppl 7): S507-S518, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38118007

RESUMO

Antimicrobial resistance (AMR) is a multifaceted global health problem disproportionately affecting low- and middle-income countries (LMICs). The Capturing data on Antimicrobial resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project was tasked to expand the volume of AMR and antimicrobial use data in Asia. The CAPTURA project used 2 data-collection streams: facility data and project metadata. Project metadata constituted information collected to map out data sources and assess data quality, while facility data referred to the retrospective data collected from healthcare facilities. A down-selection process, labelled "the funnel approach" by the project, was adopted to use the project metadata in prioritizing and selecting laboratories for retrospective AMR data collection. Moreover, the metadata served as a guide for understanding the AMR data once they were collected. The findings from CAPTURA's metadata add to the current discourse on the limitation of AMR data in LMICs. There is generally a low volume of AMR data generated as there is a lack of microbiology laboratories with sufficient antimicrobial susceptibility testing capacity. Many laboratories in Asia are still capturing data on paper, resulting in scattered or unused data not readily accessible or shareable for analyses. There is also a lack of clinical and epidemiological data captured, impeding interpretation and in-depth understanding of the AMR data. CAPTURA's experience in Asia suggests that there is a wide spectrum of capacity and capability of microbiology laboratories within a country and region. As local AMR surveillance is a crucial instrument to inform context-specific measures to combat AMR, it is important to understand and assess current capacity-building needs while implementing activities to enhance surveillance systems.


Assuntos
Antibacterianos , Países em Desenvolvimento , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Farmacorresistência Bacteriana , Ásia/epidemiologia
4.
Clin Infect Dis ; 77(Suppl 7): S500-S506, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38118015

RESUMO

BACKGROUND: In 2015, the UK government established the Fleming Fund with the aim to address critical gaps in surveillance of antimicrobial resistance (AMR) in low- and middle-income countries in Asia and Africa. Among a large portfolio of grants, the Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project was awarded with the specific objective of expanding the volume of historical data on AMR, consumption (AMC), and use (AMU) in the human healthcare sector across 12 countries in South and Southeast Asia. METHODS: Starting in early 2019, the CAPTURA consortium began working with local governments and >100 relevant data-holding facilities across the region to identify, assess for quality, prioritize, and subsequently retrieve data on AMR, AMC, and AMU. Relevant and shared data were collated and analyzed to provide local overviews for national stakeholders as well as regional context, wherever possible. RESULTS: From the vast information resource generated on current surveillance capacity and data availability, the project has highlighted gaps and areas for quality improvement and supported comprehensive capacity-building activities to optimize local data-collection and -management practices. CONCLUSIONS: The project has paved the way for expansion of surveillance networks to include both the academic and private sector in several countries and has actively engaged in discussions to promote data sharing at the local, national, and regional levels. This paper describes the overarching approach to, and emerging lessons from, the CAPTURA project, and how it contributes to other ongoing efforts to strengthen national AMR surveillance in the region and globally.


Assuntos
Antibacterianos , Distinções e Prêmios , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Ásia/epidemiologia , África/epidemiologia
5.
Lancet Microbe ; 4(12): e1047-e1055, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977162

RESUMO

Historically, epidemiological investigation and surveillance for bacterial antimicrobial resistance (AMR) has relied on low-resolution isolate-based phenotypic analyses undertaken at local and national reference laboratories. Genomic sequencing has the potential to provide a far more high-resolution picture of AMR evolution and transmission, and is already beginning to revolutionise how public health surveillance networks monitor and tackle bacterial AMR. However, the routine integration of genomics in surveillance pipelines still has considerable barriers to overcome. In 2022, a workshop series and online consultation brought together international experts in AMR and pathogen genomics to assess the status of genomic applications for AMR surveillance in a range of settings. Here we focus on discussions around the use of genomics for public health and international AMR surveillance, noting the potential advantages of, and barriers to, implementation, and proposing recommendations from the working group to help to drive the adoption of genomics in public health AMR surveillance. These recommendations include the need to build capacity for genome sequencing and analysis, harmonising and standardising surveillance systems, developing equitable data sharing and governance frameworks, and strengthening interactions and relationships among stakeholders at multiple levels.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Saúde Pública , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Bactérias
6.
Lancet Microbe ; 4(12): e1035-e1039, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977164

RESUMO

Nearly a century after the beginning of the antibiotic era, which has been associated with unparalleled improvements in human health and reductions in mortality associated with infection, the dwindling pipeline for new antibiotic classes coupled with the inevitable spread of antimicrobial resistance (AMR) poses a major global challenge. Historically, surveillance of bacteria with AMR typically relied on phenotypic analysis of isolates taken from infected individuals, which provides only a low-resolution view of the epidemiology behind an individual infection or wider outbreak. Recent years have seen increasing adoption of powerful new genomic technologies with the potential to revolutionise AMR surveillance by providing a high-resolution picture of the AMR profile of the bacteria causing infections and providing real-time actionable information for treating and preventing infection. However, many barriers remain to be overcome before genomic technologies can be adopted as a standard part of routine AMR surveillance around the world. Accordingly, the Surveillance and Epidemiology of Drug-resistant Infections Consortium convened an expert working group to assess the benefits and challenges of using genomics for AMR surveillance. In this Series, we detail these discussions and provide recommendations from the working group that can help to realise the massive potential benefits for genomics in surveillance of AMR.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Infecções Bacterianas/tratamento farmacológico , Genômica
7.
mSphere ; 8(5): e0018523, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37698417

RESUMO

Staphylococcus aureus is a major pathogen in India causing community and nosocomial infections, but little is known about its molecular epidemiology and mechanisms of resistance in hospital settings. Here, we use whole-genome sequencing (WGS) to characterize 478 S. aureus clinical isolates (393 methicillin-resistant Staphylococcus aureus (MRSA) and 85 methicilin-sensitive Staphylococcus aureus (MSSA) collected from 17 sentinel sites across India between 2014 and 2019. Sequencing results confirmed that sequence type 22 (ST22) (142 isolates, 29.7%), ST239 (74 isolates, 15.48%), and ST772 (67 isolates, 14%) were the most common clones. An in-depth analysis of 175 clonal complex (CC) 22 Indian isolates identified two novel ST22 MRSA lineages, both Panton-Valentine leukocidin+, both resistant to fluoroquinolones and aminoglycosides, and one harboring the the gene for toxic shock syndrome toxin 1 (tst). A temporal analysis of 1797 CC22 global isolates from 14 different studies showed that the two Indian ST22 lineages shared a common ancestor in 1984 (95% highest posterior density [HPD]: 1982-1986), as well as evidence of transmission to other parts of the world. Moreover, the study also gives a comprehensive view of ST2371, a sublineage of CC22, as a new emerging lineage in India and describes it in relationship with the other Indian ST22 isolates. In addition, the retrospective identification of a putative outbreak of multidrug-resistant (MDR) ST239 from a single hospital in Bangalore that persisted over a period of 3 years highlights the need for the implementation of routine surveillance and simple infection prevention and control measures to reduce these outbreaks. To our knowledge, this is the first WGS study that characterized CC22 in India and showed that the Indian clones are distinct from the EMRSA-15 clone. Thus, with the improved resolution afforded by WGS, this study substantially contributed to our understanding of the global population of MRSA. IMPORTANCE The study conducted in India between 2014 and 2019 presents novel insights into the prevalence of MRSA in the region. Previous studies have characterized two dominant clones of MRSA in India, ST772 and ST239, using whole-genome sequencing. However, this study is the first to describe the third dominant clone, ST22, using the same approach. The ST22 Indian isolates were analyzed in-depth, leading to the discovery of two new sublineages of hospital-acquired Staphylococcus aureus in India, both carrying antimicrobial resistance genes and mutations, which limit treatment options for patients. One of the newly characterized sublineages, second Indian cluster, carries the tsst-1 virulence gene, increasing the risk of severe infections. The geographic spread of the two novel lineages, both within India and internationally, could pose a global public health threat. The study also sheds light on ST2371 in India, a single-locus variant of ST22. The identification of a putative outbreak of MDR ST239 in a single hospital in Bangalore emphasizes the need for routine surveillance and simple infection prevention and control measures to reduce these outbreaks. Overall, this study significantly contributes to our understanding of the global population of MRSA, thanks to the improved resolution afforded by WGS.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Staphylococcus aureus Resistente à Meticilina/genética , Estudos Retrospectivos , Índia/epidemiologia , Infecções Estafilocócicas/epidemiologia
9.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37227244

RESUMO

Staphylococcus aureus remains one of the leading causes of infections worldwide and a common cause of bacteraemia. However, studies documenting the epidemiology of S. aureus in South America using genomics are scarce. We hereby report on the largest genomic epidemiology study to date of both methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in South America, conducted by the StaphNET-SA network. We characterised 404 genomes recovered from a prospective observational study of S. aureus bacteraemia in 58 hospitals from Argentina, Bolivia, Brazil, Paraguay and Uruguay between April and October 2019. We show that a minority of S. aureus isolates are phenotypically multi-drug resistant (5.2%), but more than a quarter are resistant to macrolide-lincosamide-streptogramin B (MLSb). MSSA were more genetically diverse than MRSA. Lower rates of associated antimicrobial resistance in community-associated(CA)-MRSA versus hospital-associated (HA)-MRSA were found in association with three S. aureus genotypes dominating the MRSA population: CC30-MRSA-IVc-t019-lukS/F-PV+, CC5-MRSA-IV-t002-lukS/F-PV- and CC8-MRSA-IVc-t008-lukS/F-PV+-COMER+. These are historically from a CA origin, carry on average fewer antimicrobial resistance determinants, and often lack key virulence genes. Surprisingly, CC398-MSSA-t1451-lukS/F-PV- related to the CC398 human-associated lineage is widely disseminated throughout the region, and is described here for the first time as the most prevalent MSSA lineage in South America. Moreover, CC398 strains carrying ermT (largely responsible for the MLSb resistance rates of MSSA strains: inducible iMLSb phenotype) and sh_fabI (related to triclosan resistance) were recovered from both CA and HA origin. The frequency of MRSA and MSSA lineages differed between countries but the most prevalent S. aureus genotypes are high-risk clones widely distributed in the South American region without a clear country-specific phylogeographical structure. Therefore, our findings underline the need for continuous genomic surveillance by regional networks such as StaphNET-SA. This article contains data hosted by Microreact.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus Resistente à Meticilina/genética , Bacteriemia/epidemiologia , Genômica , Brasil
11.
mSphere ; 8(3): e0009823, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37067411

RESUMO

Acinetobacter baumannii causes difficult-to-treat infections mostly among immunocompromised patients. Clinically relevant A. baumannii lineages and their carbapenem resistance mechanisms are sparsely described in Nigeria. This study aimed to characterize the diversity and genetic mechanisms of carbapenem resistance among A. baumannii strains isolated from hospitals in southwestern Nigeria. We sequenced the genomes of all A. baumannii isolates submitted to Nigeria's antimicrobial resistance surveillance reference laboratory between 2016 and 2020 on an Illumina platform and performed in silico genomic characterization. Selected strains were sequenced using the Oxford Nanopore technology to characterize the genetic context of carbapenem resistance genes. The 86 A. baumannii isolates were phylogenetically diverse and belonged to 35 distinct Oxford sequence types (oxfSTs), 16 of which were novel, and 28 Institut Pasteur STs (pasSTs). Thirty-eight (44.2%) isolates belonged to none of the known international clones (ICs). Over 50% of the isolates were phenotypically resistant to 10 of 12 tested antimicrobials. The majority (n = 54) of the isolates were carbapenem resistant, particularly the IC7 (pasST25; 100%) and IC9 (pasST85; >91.7%) strains. blaOXA-23 (34.9%) and blaNDM-1 (27.9%) were the most common carbapenem resistance genes detected. All blaOXA-23 genes were carried on Tn2006 or Tn2006-like transposons. Our findings suggest that a 10-kb Tn125 composite transposon is the primary means of blaNDM-1 dissemination. Our findings highlight an increase in blaNDM-1 prevalence and the widespread transposon-facilitated dissemination of carbapenemase genes in diverse A. baumannii lineages in southwestern Nigeria. We make the case for improving surveillance of these pathogens in Nigeria and other understudied settings. IMPORTANCE Acinetobacter baumannii bacteria are increasingly clinically relevant due to their propensity to harbor genes conferring resistance to multiple antimicrobials, as well as their ability to persist and disseminate in hospital environments and cause difficult-to-treat nosocomial infections. Little is known about the molecular epidemiology and antimicrobial resistance profiles of these organisms in Nigeria, largely due to limited capacity for their isolation, identification, and antimicrobial susceptibility testing. Our study characterized the diversity and antimicrobial resistance profiles of clinical A. baumannii in southwestern Nigeria using whole-genome sequencing. We also identified the key genetic elements facilitating the dissemination of carbapenem resistance genes within this species. This study provides key insights into the clinical burden and population dynamics of A. baumannii in hospitals in Nigeria and highlights the importance of routine whole-genome sequencing-based surveillance of this and other previously understudied pathogens in Nigeria and other similar settings.


Assuntos
Acinetobacter baumannii , Antibacterianos , Humanos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Carbapenêmicos/farmacologia , Hospitais , Variação Genética
12.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043380

RESUMO

Genomic analyses are widely applied to epidemiological, population genetic and experimental studies of pathogenic fungi. A wide range of methods are employed to carry out these analyses, typically without including controls that gauge the accuracy of variant prediction. The importance of tracking outbreaks at a global scale has raised the urgency of establishing high-accuracy pipelines that generate consistent results between research groups. To evaluate currently employed methods for whole-genome variant detection and elaborate best practices for fungal pathogens, we compared how 14 independent variant calling pipelines performed across 35 Candida auris isolates from 4 distinct clades and evaluated the performance of variant calling, single-nucleotide polymorphism (SNP) counts and phylogenetic inference results. Although these pipelines used different variant callers and filtering criteria, we found high overall agreement of SNPs from each pipeline. This concordance correlated with site quality, as SNPs discovered by a few pipelines tended to show lower mapping quality scores and depth of coverage than those recovered by all pipelines. We observed that the major differences between pipelines were due to variation in read trimming strategies, SNP calling methods and parameters, and downstream filtration criteria. We calculated specificity and sensitivity for each pipeline by aligning three isolates with chromosomal level assemblies and found that the GATK-based pipelines were well balanced between these metrics. Selection of trimming methods had a greater impact on SAMtools-based pipelines than those using GATK. Phylogenetic trees inferred by each pipeline showed high consistency at the clade level, but there was more variability between isolates from a single outbreak, with pipelines that used more stringent cutoffs having lower resolution. This project generated two truth datasets useful for routine benchmarking of C. auris variant calling, a consensus VCF of genotypes discovered by 10 or more pipelines across these 35 diverse isolates and variants for 2 samples identified from whole-genome alignments. This study provides a foundation for evaluating SNP calling pipelines and developing best practices for future fungal genomic studies.


Assuntos
Candida auris , Candida auris/genética , Genoma Fúngico , Filogenia , Polimorfismo de Nucleotídeo Único , Humanos , Candidíase/tratamento farmacológico , Candidíase/epidemiologia , Surtos de Doenças , Farmacorresistência Fúngica
13.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961505

RESUMO

Antimicrobial resistance (AMR) mechanisms, especially those conferring resistance to critically important antibiotics, are a great concern for public health. 16S rRNA methyltransferases (16S-RMTases) abolish the effectiveness of most clinically used aminoglycosides, but some of them are considered sporadic, such as RmtE. The main goals of this work were the genomic analysis of bacteria producing 16S-RMTases from a 'One Health' perspective in Venezuela, and the study of the epidemiological and evolutionary scenario of RmtE variants and their related mobile genetic elements (MGEs) worldwide. A total of 21 samples were collected in 2014 from different animal and environmental sources in the Cumaná region (Venezuela). Highly aminoglycoside-resistant Enterobacteriaceae isolates were selected, identified and screened for 16S-RMTase genes. Illumina and Nanopore whole-genome sequencing data were combined to obtain hybrid assemblies and analyse their sequence type, resistome, plasmidome and pan-genome. Genomic collections of rmtE variants and their associated MGEs were generated to perform epidemiological and phylogenetic analyses. A single 16S-RMTase, the novel RmtE4, was identified in five Klebsiella isolates from wastewater samples of Cumaná. This variant possessed three amino acid modifications with respect to RmtE1-3 (Asn152Asp, Val216Ile and Lys267Ile), representing the most genetic distant among all known and novel variants described in this work, and the second most prevalent. rmtE variants were globally spread, and their geographical distribution was determined by the associated MGEs and the carrying bacterial species. Thus, rmtE4 was found to be confined to Klebsiella isolates from South America, where it was closely related to ISVsa3 and an uncommon IncL plasmid related with hospital environments. This work uncovered the global scenario of RmtE and the existence of RmtE4, which could potentially emerge from South America. Surveillance and control measures should be developed based on these findings in order to prevent the dissemination of this AMR mechanism and preserve public health worldwide.


Assuntos
Klebsiella , Aminoglicosídeos/farmacologia , Plasmídeos/genética , Hospitais , Animais , Venezuela , Klebsiella/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Filogenia
14.
Microb Genom ; 9(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752781

RESUMO

Oxford Nanopore Technologies (ONT) sequencing has rich potential for genomic epidemiology and public health investigations of bacterial pathogens, particularly in low-resource settings and at the point of care, due to its portability and affordability. However, low base-call accuracy has limited the reliability of ONT data for critical tasks such as antimicrobial resistance (AMR) and virulence gene detection and typing, serotype prediction, and cluster identification. Thus, Illumina sequencing remains the standard for genomic surveillance despite higher capital and running costs. We tested the accuracy of ONT-only assemblies for common applied bacterial genomics tasks (genotyping and cluster detection, implemented via Kleborate, Kaptive and Pathogenwatch), using data from 54 unique Klebsiella pneumoniae isolates. ONT reads generated via MinION with R9.4.1 flowcells were basecalled using three alternative models [Fast, High-accuracy (HAC) and Super-accuracy (SUP), available within ONT's Guppy software], assembled with Flye and polished using Medaka. Accuracy of typing using ONT-only assemblies was compared with that of Illumina-only and hybrid ONT+Illumina assemblies, constructed from the same isolates as reference standards. The most resource-intensive ONT-assembly approach (SUP basecalling, with or without Medaka polishing) performed best, yielding reliable capsule (K) type calls for all strains (100 % exact or best matching locus), reliable multi-locus sequence type (MLST) assignment (98.3 % exact match or single-locus variants), and good detection of acquired AMR genes and mutations (88-100 % correct identification across the various drug classes). Distance-based trees generated from SUP+Medaka assemblies accurately reflected overall genetic relationships between isolates. The definition of outbreak clusters from ONT-only assemblies was problematic due to inflation of SNP counts by high base-call errors. However, ONT data could be reliably used to 'rule out' isolates of distinct lineages from suspected transmission clusters. HAC basecalling + Medaka polishing performed similarly to SUP basecalling without polishing. Therefore, we recommend investing compute resources into basecalling (SUP model), wherever compute resources and time allow, and note that polishing is also worthwhile for improved performance. Overall, our results show that MLST, K type and AMR determinants can be reliably identified with ONT-only R9.4.1 flowcell data. However, cluster detection remains challenging with this technology.


Assuntos
Klebsiella pneumoniae , Nanoporos , Genômica , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma/métodos , Farmacorresistência Bacteriana
15.
Equine Vet J ; 55(1): 92-101, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35000217

RESUMO

BACKGROUND: Streptococcus equi subspecies equi (S equi) is the cause of Strangles, one of the most prevalent diseases of horses worldwide. Variation within the immunodominant SeM protein has been documented, but a new eight-component fusion protein vaccine, Strangvac, does not contain live S equi or SeM and conservation of the antigens it contains have not been reported. OBJECTIVE: To define the diversity of the eight Strangvac antigens across a diverse S equi population. STUDY DESIGN: Genomic description. METHODS: Antigen sequences from the genomes of 759 S equi isolates from 19 countries, recovered between 1955 and 2018, were analysed. Predicted amino acid sequences in the antigen fragments of SEQ0256(Eq5), SEQ0402(Eq8), SEQ0721(EAG), SEQ0855(SclF), SEQ0935(CNE), SEQ0999(IdeE), SEQ1817(SclI) and SEQ2101(SclC) in Strangvac and SeM were extracted from the 759 assembled genomes and compared. RESULTS: The predicted amino acid sequences of SclC, SclI and IdeE were identical across all 759 genomes. CNE was truncated in the genome of five (0.7%) isolates. SclF was absent from one genome and another encoded a single amino acid substitution. EAG was truncated in two genomes. Eq5 was truncated in four genomes and 123 genomes encoded a single amino acid substitution. Eq8 was truncated in three genomes, one genome encoded four amino acid substitutions and 398 genomes encoded a single amino acid substitution at the final amino acid of the Eq8 antigen fragment. Therefore, at least 1579 (99.9%) of 1580 amino acids in Strangvac were identical in 743 (97.9%) genomes, and all genomes encoded identical amino acid sequences for at least six of the eight Strangvac antigens. MAIN LIMITATIONS: Three hundred and seven (40.4%) isolates in this study were recovered from horses in the UK. CONCLUSIONS: The predicted amino acid sequences of antigens in Strangvac were highly conserved across this collection of S equi.


Assuntos
Doenças dos Cavalos , Infecções Estreptocócicas , Streptococcus equi , Cavalos , Animais , Streptococcus equi/genética , Doenças dos Cavalos/epidemiologia , Streptococcus , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/epidemiologia
16.
Proc Natl Acad Sci U S A ; 119(38): e2203593119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095213

RESUMO

Outer membrane porins in Gram-negative bacteria facilitate antibiotic influx. In Klebsiella pneumoniae, modifications in the porin OmpK36 are implicated in increasing resistance to carbapenems. An analysis of large K. pneumoniae genome collections, encompassing major healthcare-associated clones, revealed the recurrent emergence of a synonymous cytosine-to-thymine transition at position 25 (25c > t) in ompK36. We show that the 25c > t transition increases carbapenem resistance through depletion of OmpK36 from the outer membrane. The mutation attenuates K. pneumoniae in a murine pneumonia model, which accounts for its limited clonal expansion observed by phylogenetic analysis. However, in the context of carbapenem treatment, the 25c > t transition tips the balance toward treatment failure, thus accounting for its recurrent emergence. Mechanistically, the 25c > t transition mediates an intramolecular messenger RNA (mRNA) interaction between a uracil encoded by 25t and the first adenine within the Shine-Dalgarno sequence. This specific interaction leads to the formation of an RNA stem structure, which obscures the ribosomal binding site thus disrupting translation. While mutations reducing OmpK36 expression via transcriptional silencing are known, we uniquely demonstrate the repeated selection of a synonymous ompK36 mutation mediating translational suppression in response to antibiotic pressure.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbapenêmicos , Klebsiella pneumoniae , Porinas , Resistência beta-Lactâmica , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Modelos Animais de Doenças , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Camundongos , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Porinas/classificação , Porinas/genética , RNA Mensageiro/metabolismo , Resistência beta-Lactâmica/genética
17.
Nature ; 610(7930): 154-160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952712

RESUMO

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Cidades/epidemiologia , Busca de Comunicante , Inglaterra/epidemiologia , Genoma Viral/genética , Humanos , Quarentena/legislação & jurisprudência , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/isolamento & purificação , Viagem/legislação & jurisprudência
18.
PLoS Negl Trop Dis ; 16(8): e0010716, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026470

RESUMO

BACKGROUND: Salmonellosis causes significant morbidity and mortality in Africa. Information on lineages of invasive Salmonella circulating in Nigeria is sparse. METHODS: Salmonella enterica isolated from blood (n = 60) and cerebrospinal fluid (CSF, n = 3) between 2016 and 2020 from five tertiary hospitals in southwest Nigeria were antimicrobial susceptibility-tested and Illumina-sequenced. Genomes were analysed using publicly-available bioinformatic tools. RESULTS: Isolates and sequence types (STs) from blood were S. Typhi [ST1, n = 1 and ST2, n = 43] and invasive non-typhoidal Salmonella (iNTS) (S. Enteritidis [ST11, n = 7], S. Durham [ST10, n = 2], S. Rissen [ST8756, n = 2], S. Chester [ST2063, n = 1], S. Dublin [ST10, n = 1], S. Infantis [ST603, n = 1], S. Telelkebir [ST8757, n = 1] and S. Typhimurium [ST313, n = 1]). S. Typhi ST2 (n = 2) and S. Adabraka ST8757 (n = 1) were recovered from CSF. Most S. Typhi belonged to genotype 3.1.1 (n = 44), carried an IncY plasmid, had several antibiotic resistance genes (ARGs) including blaTEM-1 (n = 38), aph(6)-Id (n = 32), tet(A) (n = 33), sul2 (n = 32), dfrA14 (n = 30) as well as quinolone resistance-conferring gyrA_S83Y single-nucleotide polymorphisms (n = 37). All S. Enteritidis harboured aph(3")-Ib, blaTEM-1, catA1, dfrA7, sul1, sul2, tet(B) genes, and a single ARG, qnrB19, was detected in S. Telelkebir. Typhoidal toxins cdtB, pltA and pltB were detected in S. Typhi, Rissen, Chester, and Telelkebir. CONCLUSION: Most invasive salmonelloses in southwest Nigeria are vaccine-preventable infections due to multidrug-resistant, West African dominant S. Typhi lineage 3.1.1. Invasive NTS serovars, including some harbouring typhoidal toxin or resistance genes, represented a third of the isolates emphasizing the need for better diagnosis and surveillance.


Assuntos
Infecções por Salmonella , Febre Tifoide , Vacinas Tíficas-Paratíficas , Antibacterianos/farmacologia , Genômica , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Testes de Sensibilidade Microbiana , Nigéria/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella enteritidis/genética , Febre Tifoide/epidemiologia
19.
Trans R Soc Trop Med Hyg ; 116(12): 1202-1213, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-35999186

RESUMO

BACKGROUND: Increasing antimicrobial resistance (AMR) in Salmonella has been observed in the Philippines. We aimed to characterise the population and AMR mechanisms of Salmonella with whole genome sequencing (WGS) and compare it with laboratory surveillance methods. METHODS: The serotype, multilocus sequence type, AMR genes and relatedness between isolates were determined from the genomes of 148 Salmonella Typhi (S. Typhi) and 65 non-typhoidal Salmonella (NTS) collected by the Antimicrobial Resistance Surveillance Program during 2013-2014. Genotypic serotypes and AMR prediction were compared with phenotypic data. RESULTS: AMR rates in S. Typhi were low, with sparse acquisition of mutations associated with reduced susceptibility to fluoroquinolones or extended-spectrum beta-lactamases (ESBL) genes. By contrast, 75% of NTS isolates were insusceptible to at least one antimicrobial, with more than half carrying mutations and/or genes linked to fluoroquinolone resistance. ESBL genes were detected in five genomes, which also carried other AMR determinants. The population of S. Typhi was dominated by likely endemic genotype 3.0, which caused a putative local outbreak. The main NTS clades were global epidemic S. Enteritidis ST11 and S. Typhimurium monophasic variant (I,4,[5],12: i: -) ST34. CONCLUSION: We provide the first genomic characterisation of Salmonella from the Philippines and evidence of WGS utility for ongoing surveillance.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Testes de Sensibilidade Microbiana , Filipinas/epidemiologia , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Genômica , Farmacorresistência Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA