Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238539

RESUMO

Metal toxicity is a common problem in crop species worldwide. Some metals are naturally toxic, whereas others such as manganese (Mn) are essential micro-nutrients for plant growth but can become toxic when in excess. Changes in the composition of the xylem sap, which is the main pathway for ion transport within the plant, is therefore vital to understanding the plant's response(s) to metal toxicity. In this study we have assessed the effects of exposure of tomato roots to excess Mn on the protein profile of the xylem sap, using a shotgun proteomics approach. Plants were grown in nutrient solution using 4.6 and 300 µM MnCl2 as control and excess Mn treatments, respectively. This approach yielded 668 proteins reliably identified and quantified. Excess Mn caused statistically significant (at p ≤ 0.05) and biologically relevant changes in relative abundance (≥2-fold increases or ≥50% decreases) in 322 proteins, with 82% of them predicted to be secretory using three different prediction tools, with more decreasing than increasing (181 and 82, respectively), suggesting that this metal stress causes an overall deactivation of metabolic pathways. Processes most affected by excess Mn were in the oxido-reductase, polysaccharide and protein metabolism classes. Excess Mn induced changes in hydrolases and peroxidases involved in cell wall degradation and lignin formation, respectively, consistent with the existence of alterations in the cell wall. Protein turnover was also affected, as indicated by the decrease in proteolytic enzymes and protein synthesis-related proteins. Excess Mn modified the redox environment of the xylem sap, with changes in the abundance of oxido-reductase and defense protein classes indicating a stress scenario. Finally, results indicate that excess Mn decreased the amounts of proteins associated with several signaling pathways, including fasciclin-like arabinogalactan-proteins and lipids, as well as proteases, which may be involved in the release of signaling peptides and protein maturation. The comparison of the proteins changing in abundance in xylem sap and roots indicate the existence of tissue-specific and systemic responses to excess Mn. Data are available via ProteomeXchange with identifier PXD021973.


Assuntos
Manganês/metabolismo , Mucoproteínas/genética , Solanum lycopersicum/genética , Xilema/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteoma/genética , Proteômica , Fatores de Transcrição/genética , Xilema/genética
2.
J Proteomics ; 185: 51-63, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29953959

RESUMO

The aim of this work was to assess the effects of manganese (Mn) toxicity on the proteome of tomato roots using two proteomic approaches, shotgun and two-dimensional electrophoresis. The shotgun approach yielded 367 reliable proteins, whereas the 2-DE approach detected 340 consistent spots. The 2-DE method found 54 proteins changing in relative abundance in the excess Mn treatment, whereas the shotgun detected changes in 118 proteins. Only 7% of the differential proteins were found by both methods, illustrating their complementary nature. Metabolic pathways most affected were protein metabolism, oxido-reductases and signaling. Results support that Mn toxicity alters the protein turnover and impairs energy production in roots, leading to changes in glycolysis, pyruvate metabolism, TCA and oxidative phosphorylation. Excess Mn also induced changes in peroxidases and hydrolases participating in cell wall lignification and suberization and activated plant defense mechanisms, with changes occurring via pathogenesis-related proteins as well as peroxidases. Finally, Mn toxicity elicited regulatory mechanisms and affected the abundance of root nutrient reservoir proteins. The overall analysis of the differential root proteome upon Mn toxicity suggests a general slowdown of metabolic activities, especially energy production, cell wall integrity and protein turnover, which occurs in parallel with increases in stress related proteins.


Assuntos
Manganês/toxicidade , Proteínas de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteômica/métodos , Solanum lycopersicum , Cromatografia Líquida , Eletroforese , Eletroforese em Gel Bidimensional , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Espectrometria de Massas em Tandem
3.
Data Brief ; 17: 512-516, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876421

RESUMO

This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in the research article entitled "Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses" [1]. This dataset is made available to support the cited study as well to extend analyses at a later stage.

4.
J Proteomics ; 170: 117-129, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28847647

RESUMO

The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary cell wall. Cell wall modifications could affect the mechanical and permeability properties of the xylem sap vessels, and therefore ultimately affect solute transport and distribution to the leaves. Results also suggest that signaling cascades involving lipid and peptides might play a role in nutrient stress signaling and pinpoint interesting candidates for future studies. Finally, both nutrient deficiencies seem to affect phosphorylation and glycosylation processes, again following an opposite pattern.


Assuntos
Deficiências de Ferro , Manganês/deficiência , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica , Transdução de Sinais , Xilema/metabolismo , Solanum lycopersicum
5.
Front Plant Sci ; 7: 1711, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933069

RESUMO

Root secretion of coumarin-phenolic type compounds has been recently shown to be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous studies revealed the identity of a few simple coumarins occurring in roots and exudates of Fe-deficient A. thaliana plants, and left open the possible existence of other unknown phenolics. We used HPLC-UV/VIS/ESI-MS(TOF), HPLC/ESI-MS(ion trap) and HPLC/ESI-MS(Q-TOF) to characterize (identify and quantify) phenolic-type compounds accumulated in roots or secreted into the nutrient solution of A. thaliana plants in response to Fe deficiency. Plants grown with or without Fe and using nutrient solutions buffered at pH 5.5 or 7.5 enabled to identify an array of phenolics. These include several coumarinolignans not previously reported in A. thaliana (cleomiscosins A, B, C, and D and the 5'-hydroxycleomiscosins A and/or B), as well as some coumarin precursors (ferulic acid and coniferyl and sinapyl aldehydes), and previously reported cathecol (fraxetin) and non-cathecol coumarins (scopoletin, isofraxidin and fraxinol), some of them in hexoside forms not previously characterized. The production and secretion of phenolics were more intense when the plant accessibility to Fe was diminished and the plant Fe status deteriorated, as it occurs when plants are grown in the absence of Fe at pH 7.5. Aglycones and hexosides of the four coumarins were abundant in roots, whereas only the aglycone forms could be quantified in the nutrient solution. A comprehensive quantification of coumarins, first carried out in this study, revealed that the catechol coumarin fraxetin was predominant in exudates (but not in roots) of Fe-deficient A. thaliana plants grown at pH 7.5. Also, fraxetin was able to mobilize efficiently Fe from a Fe(III)-oxide at pH 5.5 and pH 7.5. On the other hand, non-catechol coumarins were much less efficient in mobilizing Fe and were present in much lower concentrations, making unlikely that they could play a role in Fe mobilization. The structural features of the array of coumarin type-compounds produced suggest some can mobilize Fe from the soil and others can be more efficient as allelochemicals.

6.
Front Plant Sci ; 7: 893, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446123

RESUMO

The aim of this study was to trace the Fe uptake pathway in leaves of Prunus rootstock (GF 677; Prunus dulcis × Prunus persica) plants treated with foliar Fe compounds using the Perls blue method, which detects labile Fe pools. Young expanded leaves of Fe-deficient plants grown in nutrient solution were treated with Fe-compounds using a brush. Iron compounds used were the ferrous salt FeSO4, the ferric salts Fe2(SO4)3 and FeCl3, and the chelate Fe(III)-EDTA, all of them at concentrations of 9 mM Fe. Leaf Fe concentration increases were measured at 30, 60, 90 min, and 24 h, and 70 µm-thick leaf transversal sections were obtained with a vibrating microtome and stained with Perls blue. In vitro results show that the Perls blue method is a good tool to trace the Fe uptake pathway in leaves when using Fe salts, but is not sensitive enough when using synthetic Fe(III)-chelates such as Fe(III)-EDTA and Fe(III)-IDHA. Foliar Fe fertilization increased leaf Fe concentrations with all Fe compounds used, with inorganic Fe salts causing larger leaf Fe concentration increases than Fe(III)-EDTA. Results show that Perls blue stain appeared within 30 min in the stomatal areas, indicating that Fe applied as inorganic salts was taken up rapidly via stomata. In the case of using FeSO4 a progression of the stain was seen with time toward vascular areas in the leaf blade and the central vein, whereas in the case of Fe(III) salts the stain mainly remained in the stomatal areas. Perls stain was never observed in the mesophyll areas, possibly due to the low concentration of labile Fe pools.

7.
J Proteome Res ; 15(8): 2510-24, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27321140

RESUMO

In the present study we have used label-free shotgun proteomic analysis to examine the effects of Fe deficiency on the protein profiles of highly pure sugar beet root plasma membrane (PM) preparations and detergent-resistant membranes (DRMs), the latter as an approach to study microdomains. Altogether, 545 proteins were detected, with 52 and 68 of them changing significantly with Fe deficiency in PM and DRM, respectively. Functional categorization of these proteins showed that signaling and general and vesicle-related transport accounted for approximately 50% of the differences in both PM and DRM, indicating that from a qualitative point of view changes induced by Fe deficiency are similar in both preparations. Results indicate that Fe deficiency has an impact in phosphorylation processes at the PM level and highlight the involvement of signaling proteins, especially those from the 14-3-3 family. Lipid profiling revealed Fe-deficiency-induced decreases in phosphatidic acid derivatives, which may impair vesicle formation, in agreement with the decreases measured in proteins related to intracellular trafficking and secretion. The modifications induced by Fe deficiency in the relative enrichment of proteins in DRMs revealed the existence of a group of cytoplasmic proteins that appears to be more attached to the PM in conditions of Fe deficiency.


Assuntos
Beta vulgaris/química , Membrana Celular/química , Deficiências de Ferro , Microdomínios da Membrana/química , Proteínas de Plantas/análise , Proteômica/métodos , Membrana Celular/metabolismo , Lipídeos/análise , Microdomínios da Membrana/metabolismo , Ácidos Fosfatídicos , Fosforilação , Raízes de Plantas/química
8.
J Proteomics ; 140: 1-12, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27045941

RESUMO

UNLABELLED: Iron deficiency is a yield-limiting factor with major implications for crop production, especially in soils with high CaCO3. Because stems are essential for the delivery of nutrients to the shoots, the aim of this work was to study the effects of Fe deficiency on the stem proteome of Medicago truncatula. Two-dimensional electrophoresis separation of stem protein extracts resolved 276 consistent spots in the whole experiment. Iron deficiency in absence or presence of CaCO3 caused significant changes in relative abundance in 10 and 31 spots, respectively, and 80% of them were identified by mass spectrometry. Overall results indicate that Fe deficiency by itself has a mild effect on the stem proteome, whereas Fe deficiency in the presence of CaCO3 has a stronger impact and causes changes in a larger number of proteins, including increases in stress and protein metabolism related proteins not observed in the absence of CaCO3. Both treatments resulted in increases in cell wall related proteins, which were more intense in the presence of CaCO3. The increases induced by Fe-deficiency in the lignin per protein ratio and changes in the lignin monomer composition, assessed by pyrolysis-gas chromatography-mass spectrometry and microscopy, respectively, further support the existence of cell wall alterations. BIOLOGICAL SIGNIFICANCE: In spite of being essential for the delivery of nutrients to the shoots, our knowledge of stem responses to nutrient deficiencies is very limited. The present work applies 2-DE techniques to unravel the response of this understudied tissue to Fe deficiency. Proteomics data, complemented with mineral, lignin and microscopy analyses, indicate that stems respond to Fe deficiency by increasing stress and defense related proteins, probably in response of mineral and osmotic unbalances, and eliciting significant changes in cell wall composition. The changes observed are likely to ultimately affect solute transport and distribution to the leaves.


Assuntos
Carbonato de Cálcio/farmacologia , Deficiências de Ferro , Medicago truncatula/metabolismo , Proteínas de Plantas/análise , Caules de Planta/química , Parede Celular/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Ferro/farmacologia , Lignina/análise , Espectrometria de Massas , Proteínas de Plantas/efeitos dos fármacos , Proteoma/análise , Proteoma/efeitos dos fármacos , Proteômica/métodos
9.
New Phytol ; 209(2): 733-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26351005

RESUMO

Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms.


Assuntos
Beta vulgaris/metabolismo , Compostos Férricos/metabolismo , Flavinas/metabolismo , Ferro/metabolismo , Beta vulgaris/efeitos dos fármacos , Flavinas/farmacologia , Ferro/farmacocinética , Metais/metabolismo , Metais/farmacocinética , NAD/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solubilidade
10.
Proteomics ; 15(22): 3835-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26316195

RESUMO

The aim of this work was to study the effect of Fe deficiency on the protein profile of phloem sap exudates from Brassica napus using 2DE (IEF-SDS-PAGE). The experiment was repeated thrice and two technical replicates per treatment were done. Phloem sap purity was assessed by measuring sugar concentrations. Two hundred sixty-three spots were consistently detected and 15.6% (41) of them showed significant changes in relative abundance (22 decreasing and 19 increasing) as a result of Fe deficiency. Among them, 85% (35 spots), were unambiguously identified. Functional categories containing the largest number of protein species showing changes as a consequence of Fe deficiency were signaling and regulation (32%), and stress and redox homeostasis (17%). The Phloem sap showed a higher oxidative stress and significant changes in the hormonal profile as a result of Fe deficiency. Results indicate that Fe deficiency elicits major changes in signaling pathways involving Ca and hormones, which are generally associated with flowering and developmental processes, causes an alteration in ROS homeostasis processes, and induces decreases in the abundances of proteins involved in sieve element repair, suggesting that Fe-deficient plants may have an impaired capacity to heal sieve elements upon injury.


Assuntos
Brassica napus/metabolismo , Ferro/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Eletroforese em Gel de Poliacrilamida , Estresse Oxidativo , Reguladores de Crescimento de Plantas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
11.
Front Plant Sci ; 6: 145, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852707

RESUMO

The fluid collected by direct leaf centrifugation has been used to study the proteome of the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient and Fe-deficient conditions, and Fe resupply was carried out with 45 µM Fe(III)-EDTA for 24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots, and proteins in 81% of them (164) were identified by nLC-MS/MS using a custom made reference repository of beet protein sequences. When redundant UniProt entries were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were secretory proteins. Functional classification of the non-redundant proteins indicated that stress and defense, protein metabolism, cell wall and C metabolism accounted for approximately 75% of the identified proteome. The effects of Fe-deficiency on the leaf apoplast proteome were limited, with only five spots (2.5%) changing in relative abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is well-maintained upon Fe shortage. The identification of three chitinase isoforms among proteins increasing in relative abundance with Fe-deficiency suggests that one of the few effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications. Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots can be broadly classified as those responding to Fe-resupply, which included defense and cell wall related proteins, and non-responsive, which are mainly protein metabolism related proteins and whose changes in relative abundance followed the same trend as with Fe-deficiency.

12.
Photosynth Res ; 123(2): 141-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25344757

RESUMO

In the field, leaves may face very different light intensities within the tree canopy. Leaves usually respond with light-induced morphological and photosynthetic changes, in a phenomenon known as phenotypic plasticity. Canopy light distribution, leaf anatomy, gas exchange, chlorophyll fluorescence, and pigment composition were investigated in an olive (Olea europaea, cvs. Arbequina and Arbosana) orchard planted with a high-density system (1,250 trees ha(-1)). Sampling was made from three canopy zones: a lower canopy (<1 m), a central one (1-2 m), and an upper one (>2 m). Light interception decreased significantly in the lower canopy when compared to the central and top ones. Leaf angle increased and photosynthetic rates and non-photochemical quenching (NPQ) decreased significantly and progressively from the upper canopy to the central and the lower canopies. The largest leaf areas were found in the lower canopy, especially in the cultivar Arbequina. The palisade and spongy parenchyma were reduced in thickness in the lower canopy when compared to the upper one, in the former due to a decrease in the number of cell layers from three to two (clearly distinguishable in the light and fluorescence microscopy images). In both cultivars, the concentration of violaxanthin-cycle pigments and ß-carotene was higher in the upper than in the lower canopy. Furthermore, the de-epoxidized forms zeaxanthin and antheraxanthin increased significantly in those leaves from the upper canopy, in parallel to the NPQ increases. In conclusion, olive leaves react with morphological and photosynthetic changes to within-crown light gradients. These results strengthen the idea of olive trees as "modular organisms" that adjust the modules morphology and physiology in response to light intensity.


Assuntos
Olea/fisiologia , Fotossíntese , Clorofila/metabolismo , Fluorescência , Luz , Olea/anatomia & histologia , Olea/efeitos da radiação , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
13.
Front Plant Sci ; 5: 105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24723928

RESUMO

The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids.

14.
Front Plant Sci ; 5: 2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24478782

RESUMO

Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

15.
New Phytol ; 201(1): 155-167, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24015802

RESUMO

Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown. We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared. Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants. Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Raízes de Plantas/metabolismo , Escopoletina/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Perfilação da Expressão Gênica , Genes de Plantas , Redes e Vias Metabólicas , Mutação , Estresse Fisiológico/genética , Espectrometria de Massas em Tandem , Regulação para Cima
16.
J Proteomics ; 94: 149-61, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24056184

RESUMO

Changes induced by three levels of Zn toxicity in the root proteome from Beta vulgaris were studied by two dimensional gel electrophoresis. 320 spots were consistently detected and 5, 5 and 11% of them showed significant changes in relative abundance as a result of the 50, 100 and 300µM Zn treatments, respectively, when compared to controls (1.2µM Zn). Forty-four spots had consistent changes between all treatments, and 93% were identified. At low and mild Zn excess, the complex I of the mitochondrial transport chain and the oxidative phosphorylation were mildly impaired, and an effort to compensate this effect by increasing glycolysis was observed. At high Zn excess, a general metabolism shutdown occurred, as denoted by decreases in the aerobic respiration and by an impairment of the defense systems against oxidative stress. Accordingly, lipid peroxidation increased as Zn supply increased. This study suggests that metabolic changes at high Zn supply reflect cell death, while changes at low and mild Zn supplies may rather explain the metabolic reprogramming occurring upon Zn toxicity. Results also suggest that Zn competition with divalent ions including Fe may contribute to many of the Zn toxicity symptoms, especially at low and moderate Zn supplies. BIOLOGICAL SIGNIFICANCE: Results in this work provide a comprehensive overview of the effects of Zn toxicity in roots of sugar beet plants. Effects at low and mild Zn excess are similar and reflect changes in the metabolism aimed to overcome this heavy metal stress, whereas effects at high Zn supply indicate a general shutdown of the metabolism and cell death. Our results indicate that Zn toxicity elicits major impairments in the oxidative stress defense systems, possibly due to Zn competition with divalent cations including Fe, in spite that Zn is not a redox active element by itself.


Assuntos
Beta vulgaris/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Oligoelementos/farmacologia , Zinco/farmacologia
17.
Front Plant Sci ; 4: 254, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23898336

RESUMO

Iron (Fe) deficiency chlorosis is a major nutritional disorder for crops growing in calcareous soils, and causes decreases in vegetative growth as well as marked yield and quality losses. With the advances in mass spectrometry techniques, a substantial body of knowledge has arisen on the changes in the protein profiles of different plant parts and compartments as a result of Fe deficiency. Changes in the protein profile of thylakoids from several species have been investigated using gel-based two-dimensional electrophoresis approaches, and the same techniques have been used to investigate changes in the root proteome profiles of tomato (Solanum lycopersicum), sugar beet (Beta vulgaris), cucumber (Cucumis sativus), Medicago truncatula and a Prunus rootstock. High throughput proteomic studies have also been published using Fe-deficient Arabidopsis thaliana roots and thylakoids. This review summarizes the major conclusions derived from these "-omic" approaches with respect to metabolic changes occurring with Fe deficiency, and highlights future research directions in this field. A better understanding of the mechanisms involved in root Fe homeostasis from a holistic point of view may strengthen our ability to enhance Fe-deficiency tolerance responses in plants of agronomic interest.

18.
Proteomics ; 13(15): 2283-96, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23712964

RESUMO

The aim of this study was to obtain a comprehensive overview of the phloem sap protein profile of Lupinus texensis, with a special focus on proteins binding Fe and Zn. L. texensis was chosen as model plant given the simplicity to obtain exudates from sieve elements. Protein profiling by 2DE revealed 249 spots, and 54 of them were unambiguously identified by MALDI-MS and ESI-MS/MS. The largest number of identified protein species belongs to protein modification/turnover and general metabolism (19-21%), followed by redox homeostasis (9%) and defense and cell structural components (7%). This protein profile is similar to that reported in other plant species, suggesting that the phloem sap proteome is quite conserved. Staining of 2DE gels for Fe-containing proteins and affinity chromatography experiments revealed the presence of two low molecular weight Fe-binding proteins in phloem sap: a metallothionein-like protein type 2B identified in the Fe-affinity chromatography, and a second protein identified with both Fe staining methods. This protein species had a molecular weight of 13.5 kDa, a pI of 5.6 and 51% homology to a phloem-specific protein from Medicago truncatula. Zinc affinity chromatography revealed four Zn-binding proteins in phloem sap, one belonging to the dehydrin family and three Zn finger proteins.


Assuntos
Lupinus/química , Metaloproteínas/análise , Floema/química , Proteínas de Plantas/análise , Western Blotting , Cromatografia de Afinidade , Eletroforese em Gel Bidimensional , Metaloproteínas/química , Metaloproteínas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Proteoma/análise , Espectrometria de Massas em Tandem , Dedos de Zinco
19.
J Proteome Res ; 12(3): 1162-72, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23320467

RESUMO

The changes in the root extract protein profile of the Prunus hybrid GF 677 rootstock (P. dulcis × P. persica) grown in hydroponics as affected by Fe deficiency and short-term (24 h) Fe resupply have been studied by 2-dimensional gel electrophoresis-based techniques. A total of 335 spots were consistently found in the gels. Iron deficiency caused above 2-fold increases or >50% decreases in the relative abundance in 10 and 6 spots, respectively, whereas one spot was only detected in Fe-deficient plants. Iron resupply to Fe-deficient plants caused increases and decreases in relative abundance in 15 and 16 spots, respectively, and one more spot was only detected in Fe-resupplied Fe-deficient plants. Ninety-five percent of the proteins changing in relative abundance were identified using nanoliquid chromatography-tandem mass spectrometry. Defense responses against oxidative and general stress accounted for 50% of the changes in Fe-deficient roots. Also, a slight induction of the glycolysis-fermentation pathways was observed in GF 677 roots with Fe deficiency. The root protein profile of 24 h Fe-resupplied plants was similar to that of Fe-deficient plants, indicating that the deactivation of Fe-deficiency metabolic responses is slow. Taken together, our results suggest that the high tolerance of GF 677 rootstock to Fe deficiency may be related to its ability to elicit a sound defense response against both general and oxidative stress.


Assuntos
Deficiências de Ferro , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Prunus , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
20.
J Sci Food Agric ; 92(8): 1672-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22228397

RESUMO

BACKGROUND: Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. RESULTS: Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. CONCLUSION: The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field.


Assuntos
Carya/metabolismo , Clorofila/metabolismo , Folhas de Planta/metabolismo , Zinco/metabolismo , Carya/anatomia & histologia , Carya/crescimento & desenvolvimento , América do Norte , Valor Nutritivo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA