Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 90(3): 1531-1535, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29309728

RESUMO

Encrustation on the surface of urological devices such as ureteral stents leads to their blockage. However, limited tools are available for fast and real-time monitoring and modeling of the encrustation process. In this work, we have developed a model for in vitro study of encrustation and coupled it to an online monitoring QCM technique. The QCM biosensor is precoated with a polymer that is representative of the surface of a ureteral stent and subsequently coated with urease to facilitate crystallization of calcium and magnesium phosphate. The changes in deposition of crystals on the polymer surface are monitored quantitatively using a quartz crystal microbalance (QCM) biosensor. The QCM sensor is capable of dynamic, label-free detection and has a very high sensitivity. Experimental data generated using this model shows that pretreatment of the sensor surface with urease significantly induces early stage encrustation as compared to the untreated sensor surface, which emulates the real encrustation process. This encrustation study model has a high utility in screening studies for materials used in urological devices.

2.
Biosens Bioelectron ; 74: 808-14, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26232675

RESUMO

Adenovirus infection, which is a waterborne viral disease, is one of the most prevelant causes of human morbidity in the world. Thus, methods for rapid detection of this infectious virus in the environment are urgently needed for public health protection. In this study, we developed a rapid, real-time, sensitive, and label-free SPRi-based biosensor for rapid, sensitive and highly selective detection of adenoviruses. The sensing protocol consists of mixing the sample containing adenovirus with a predetermined concentration of adenovirus antibody. The mixture was filtered to remove the free antibodies from the sample. A secondary antibody, which was specific to the adenovirus antibody, was immobilized onto the SPRi chip surface covalently and the filtrate was flowed over the sensor surface. When the free adenovirus antibodies bound to the surface-immobilized secondary antibodies, we observed this binding via changes in reflectivity. In this approach, a higher amount of adenoviruses resulted in fewer free adenovirus antibodies and thus smaller reflectivity changes. A dose-response curve was generated, and the linear detection range was determined to be from 10 PFU/mL to 5000 PFU/mL with an R(2) value greater than 0.9. The results also showed that the developed biosensing system had a high specificity towards adenovirus (less than 20% signal change when tested in a sample matrix containing rotavirus and lentivirus).


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/isolamento & purificação , Técnicas Biossensoriais , Adenoviridae/imunologia , Adenoviridae/patogenicidade , Infecções por Adenoviridae/diagnóstico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Humanos , Ressonância de Plasmônio de Superfície
3.
J Biomed Mater Res A ; 103(2): 451-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24737699

RESUMO

This study investigated the ability of lubricin (LUB) to prevent bacterial attachment and proliferation on model tissue culture polystyrene surfaces. The findings from this study indicated that LUB was able to reduce the attachment and growth of Staphylococcus aureus on tissue culture polystyrene over the course of 24 h by approximately 13.9% compared to a phosphate buffered saline (PBS)-soaked control. LUB also increased S. aureus lag time (the period of time between the introduction of bacteria to a new environment and their exponential growth) by approximately 27% compared to a PBS-soaked control. This study also indicated that vitronectin (VTN), a protein homologous to LUB, reduced bacterial S. aureus adhesion and growth on tissue culture polystyrene by approximately 11% compared to a PBS-soaked control. VTN also increased the lag time of S. aureus by approximately 43%, compared to a PBS-soaked control. Bovine submaxillary mucin was studied because there are similarities between it and the center mucin-like domain of LUB. Results showed that the reduction of S. aureus and Staphylococcus epidermidis proliferation on mucin coated surfaces was not as substantial as that seen with LUB. In summary, this study provided the first evidence that LUB reduced the initial adhesion and growth of both S. aureus and S. epidermidis on a model surface to suppress biofilm formation. These reductions in initial bacteria adhesion and proliferation can be beneficial for medical implants and, although requiring more study, can lead to drastically improved patient outcomes.


Assuntos
Aderência Bacteriana , Proliferação de Células , Glicoproteínas/química , Staphylococcus aureus/metabolismo , Animais , Bovinos , Poliestirenos/química , Propriedades de Superfície , Vitronectina/química
4.
PLoS One ; 9(6): e101429, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24978477

RESUMO

We present an automated method for isolating pure bacterial cultures from samples containing multiple species that exploits the cell's own physiology to perform the separation. Cells compete to reach a chamber containing nutrients via a constriction whose cross-sectional area only permits a single cell to enter, thereby blocking the opening and preventing other cells from entering. The winning cell divides across the constriction and its progeny populate the chamber. The devices are passive and require no user interaction to perform their function. Device fabrication begins with the creation of a master mold that contains the desired constriction and chamber features. Replica molding is used to create patterned polymer chips from the master, which are bonded to glass microscope cover slips to create the constrictions. We tested constriction geometries ranging from 500 nanometers to 5 micrometers in width, 600 to 950 nanometers in height, and 10 to 40 micrometers in length. The devices were used to successfully isolate a pure Pseudomonas aeruginosa culture from a mixture that also contained Escherichia coli. We demonstrated that individual strains of the same species can be separated out from mixtures using red and green fluorescently-labeled E. coli. We also used the devices to isolate individual environmental species. Roseobacter sp. was separated from another marine species, Psychroserpens sp.


Assuntos
Bactérias/isolamento & purificação , Citometria de Fluxo/métodos , Bactérias/citologia , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Citometria de Fluxo/instrumentação
5.
Biomicrofluidics ; 8(2): 021804, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24753735

RESUMO

This paper describes the use of Surface Plasmon Resonance imaging (SPRi) as an emerging technique to study bacterial physiology in real-time without labels. The overwhelming majority of bacteria on earth exist in large multicellular communities known as biofilms. Biofilms are especially problematic because they facilitate the survival of pathogens, leading to chronic and recurring infections as well as costly industrial complications. Monitoring biofilm accumulation and removal is therefore critical in these and other applications. SPRi uniquely provides label-free, high-resolution images of biomass coverage on large channel surfaces up to 1 cm(2) in real time, which allow quantitative assessment of biofilm dynamics. The rapid imaging capabilities of this technique are particularly relevant for multicellular bacterial studies, as these cells can swim several body lengths per second and divide multiple times per hour. We present here the first application of SPRi to image Escherichia coli and Pseudomonas aeruginosa cells moving, attaching, and forming biofilms across a large surface. This is also the first time that biofilm removal has been visualized with SPRi, which has important implications for monitoring the biofouling and regeneration of fluidic systems. Initial images of the removal process show that the biofilm releases from the surface as a wave along the direction of the fluid flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA