Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 200: 27-35, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35550916

RESUMO

Among the protein lysine methyltransferases family members, it appears that SETD6 is highly similar and closely related to SETD3. The two methyltransferases show high similarity in their structure, which raised the hypothesis that they share cellular functions. Using a proteomic screen, we identified 52 shared interacting-proteins. Gene Ontology (GO) analysis of the shared proteins revealed significant enrichment of proteins involved in transcription. Our RNA-seq data of SETD6 KO and SETD3 KO HeLa cells identified ∼100 up-regulated and down-regulated shared genes. We have also identified a substantial number of genes that changed dramatically in the double KO cells but did not significantly change in the single KO cells. GO analysis of these genes revealed enrichment of apoptotic genes. Accordingly, we show that the double KO cells displayed high apoptotic levels, suggesting that SETD6 and SETD3 inhibit apoptosis. Collectively, our data strongly suggest a functional link between SETD6 and SETD3 in the regulation of apoptosis.


Assuntos
Histona Metiltransferases , Proteínas Metiltransferases , Proteômica , Apoptose/genética , Células HeLa , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Humanos , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Relação Estrutura-Atividade
2.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34039605

RESUMO

The transcriptional coactivator BRD4 has a fundamental role in transcription regulation and thus became a promising epigenetic therapeutic candidate to target diverse pathologies. However, the regulation of BRD4 by posttranslational modifications has been largely unexplored. Here, we show that BRD4 is methylated on chromatin at lysine-99 by the protein lysine methyltransferase SETD6. BRD4 methylation negatively regulates the expression of genes that are involved in translation and inhibits total mRNA translation in cells. Mechanistically, we provide evidence that supports a model where BRD4 methylation by SETD6 does not have a direct role in the association with acetylated histone H4 at chromatin. However, this methylation specifically determines the recruitment of the transcription factor E2F1 to selected target genes that are involved in mRNA translation. Together, our findings reveal a previously unknown molecular mechanism for BRD4 methylation-dependent gene-specific targeting, which may serve as a new direction for the development of therapeutic applications.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , Proteínas Metiltransferases , Fatores de Transcrição , Proteínas de Ciclo Celular/genética , Cromatina , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Proteínas Metiltransferases/genética , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell Death Dis ; 10(2): 74, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683849

RESUMO

SETD3 is a member of the protein lysine methyltransferase (PKMT) family, which catalyzes the addition of methyl group to lysine residues. However, the protein network and the signaling pathways in which SETD3 is involved remain largely unexplored. In the current study, we show that SETD3 is a positive regulator of DNA-damage-induced apoptosis in colon cancer cells. Our data indicate that depletion of SETD3 from HCT-116 cells results in a significant inhibition of apoptosis after doxorubicin treatment. Our results imply that the positive regulation is sustained by methylation, though the substrate remains unknown. We present a functional cross-talk between SETD3 and the tumor suppressor p53. SETD3 binds p53 in cells in response to doxorubicin treatment and positively regulates p53 target genes activation under these conditions. Mechanistically, we provide evidence that the presence of SETD3 and its catalytic activity is required for the recruitment of p53 to its target genes. Finally, Kaplan-Meier survival analysis, of two-independent cohorts of colon cancer patients, revealed that low expression of SETD3 is a reliable predictor of poor survival in these patients, which correlates with our findings. Together, our data uncover a new role of the PKMT SETD3 in the regulation of p53-dependent activation of apoptosis in response to DNA damage.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Dano ao DNA/efeitos dos fármacos , Histona Metiltransferases/metabolismo , Neoplasias Colorretais/patologia , Doxorrubicina/farmacologia , Seguimentos , Técnicas de Inativação de Genes , Células HCT116 , Histona Metiltransferases/genética , Humanos , Estimativa de Kaplan-Meier , Metilação/efeitos dos fármacos , Plasmídeos/genética , Prognóstico , Taxa de Sobrevida , Transfecção , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA