Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 20(10): 1930-9, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19788194

RESUMO

Metalloenzymes and electron transfer proteins influence the electrochemical properties of metal cofactors by controlling the second-sphere environment of the protein active site. Properties that tune this environment include the dielectric constant, templated charge structure, van der Waals interactions, and hydrogen bonds. By systematically varying the binding of a redox-active ligand with a protein, we can evaluate how these noncovalent interactions alter the electronic structure of the bound metal complex. For this study, we employ the well-characterized avidin-biotin conjugate as the protein-ligand system, and have synthesized solvatochromic biotinylated and desthiobiotinylated iron(II) bipyridine tetracyano complexes ([Fe(BMB)(CN)(4)](2-) (1) and [Fe(DMB)(CN)(4)](2-) (2)). The binding affinities of 1 and 2 with avidin are 3.5 × 10(7) M(-1) and 1.5 × 10(6) M(-1), respectively. The redox potentials of 1 and 2 (333 mV and 330 mV) shift to 193 mV and 203 mV vs Ag/AgCl when the complex is bound to avidin and adsorbed to a monolayer-coated gold electrode. Upon binding to avidin, the MLCT1 band red-shifts 20 nm for 1 and 10 nm for 2. Similarly, the MLCT2 band for 1 red-shifts 7 nm and the band for 2 red-shifts 6 nm. For comparison, the electronic properties of 1 and 2 were investigated in organic solvents, and similar shifts in the MLCT bands and redox potentials were observed. An X-ray crystal structure of 1 bound to avidin was obtained, and molecular dynamics simulations were performed to analyze the protein environment of the protein-bound transition metal complexes. Our studies demonstrate that changes in the binding affinity of a ligand-receptor pair influence the outer-sphere coordination of the ligand, which in turn affects the electronic properties of the bound complex.


Assuntos
Avidina/química , Compostos Ferrosos/síntese química , Ferro , Proteínas , Biotina/química , Cristalografia por Raios X , Eletroquímica , Ligação de Hidrogênio , Ferro/química , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Compostos Organometálicos/síntese química , Ligação Proteica , Proteínas/química , Proteínas/metabolismo
2.
J Biol Inorg Chem ; 11(4): 459-66, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16570183

RESUMO

The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-A resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.


Assuntos
Proteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Sequência Conservada , Cobre/química , Cobre/metabolismo , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Modelos Moleculares , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo
3.
J Biol Chem ; 279(51): 53584-92, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15465825

RESUMO

Cox17 is a 69-residue cysteine-rich, copper-binding protein that has been implicated in the delivery of copper to the Cu(A) and Cu(B) centers of cytochrome c oxidase via the copper-binding proteins Sco1 and Cox11, respectively. According to isothermal titration calorimetry experiments, fully reduced Cox17 binds one Cu(I) ion with a K(a) of (6.15 +/- 5.83) x 10(6) M(-1). The solution structures of both apo and Cu(I)-loaded Cox17 reveal two alpha helices preceded by an extensive, unstructured N-terminal region. This region is reminiscent of intrinsically unfolded proteins. The two structures are very similar overall with residues in the copper-binding region becoming more ordered in Cu(I)-loaded Cox17. Based on the NMR data, the Cu(I) ion has been modeled as two-coordinate with ligation by conserved residues Cys(23) and Cys(26). This site is similar to those observed for the Atx1 family of copper chaperones and is consistent with reported mutagenesis studies. A number of conserved, positively charged residues may interact with complementary surfaces on Sco1 and Cox11, facilitating docking and copper transfer. Taken together, these data suggest that Cox17 is not only well suited to a copper chaperone function but is specifically designed to interact with two different target proteins.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Cobre/química , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Sítios de Ligação , Calorimetria , Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular , Proteínas de Transporte de Cobre , Cisteína/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Modelos Moleculares , Chaperonas Moleculares/química , Oxirredução , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA