Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 928: 172265, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621534

RESUMO

Extensive unforested sandy areas on the margins of floodplains and riverbeds, formed by dunes, barchans, and accumulation berms, are a ubiquitous feature across northern Eurasia and Alaska. These dynamic landscapes, which bear witness to the complex Holocene and modern climatic fluctuations, provide a unique opportunity to study ecosystem evolution. Within this heterogeneous assemblage, active dunes, characterized by their very sparse plant communities, contrast sharply with the surrounding taiga (boreal) forests common for the stabilized dunes. This juxtaposition makes these regions to natural laboratories to study vegetation succession and soil development. Through a comprehensive analysis of climate, geomorphology, vegetation, soil properties, and microbiome composition, we elucidate the intricacies of cyclic and linear ecosystem evolution within a representative sandy area located along the lower Nadym River in Siberia, approximately 100 km south of the Arctic Circle. The shift in the Holocene wind regime and the slow development of vegetation under harsh climatic conditions promoted cyclical ecosystem dynamics that precluded the attainment of a steady state. This cyclical trajectory is exemplified by Arenosols, characterized by extremely sparse vegetation and undifferentiated horizons. Conversely, accelerated vegetation growth within wind-protected enclaves on marginally stabilized soils facilitated sand stabilization and subsequent pedogenesis towards Podzols. Based on soil acidification due to litter input (mainly needles, lichens, and mosses) and the succession of microbial communities, we investigated constraints on carbon and nutrient availability during the initial stages of pedogenesis. In summary, the comprehensive study of initial ecosystem development on sand dunes within taiga forests has facilitated the elucidation of both common phases and spatiotemporal dynamics of vegetation and soil succession. This analysis has further clarified the existence of both cyclic and linear trajectories within the successional processes of ecosystem evolution.


Assuntos
Ecossistema , Solo , Taiga , Sibéria , Solo/química , Areia , Monitoramento Ambiental , Microbiota , Microbiologia do Solo
3.
BMC Ecol Evol ; 24(1): 17, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302909

RESUMO

The quality of swans' nutrition at spring migration stopovers is important for their successful breeding. It is of great interest to study the differences in nutrition of different swan species when sharing the same habitat. Microscopic analysis of Cygnus olor, C. cygnus, and C. columbianus bewickii feces collected in the eastern part of the Gulf of Finland in February-April 2014-2019 was performed. We measured food preferences of the three swan species using non-metric multidimensional scaling (NMDS). The width and overlap of dietary niches were also calculated. The diet of C. olor consists almost entirely of soft submerged aquatic vegetation, mainly macroalgae. Samples of the other two species except macroalgae contained large amounts of young shoots and roots of rigid semi-submerged and coastal vegetation. The dietary niche of C. cygnus is the most isolated because it is dominated by thick rhizomes of Phragmites australis, which are hardly used by other swan species. The diet of Bewick's swans was similar in many respects to that of the Mute swan, but Bewick's swans much more often preferred vegetative parts of submerged and semi-submerged plants, such as Stuckenia pectinata, Potamogeton perfoliatus, Sparganium sp., Nuphar lutea, and others. Notably, the dietary niches of Mute swan and Whooper swan overlapped as much as possible in February March during a period of severe food shortage, in contrast to later periods in spring when food was more abundant and varied. In general, differences in diets are well explained by differences in the morphology of birds. Comparison of tarsometatarsus indices shows that C. olor is the most water-related species. C. olor has the longest neck and its beak has the strongest filter features, whereas beaks of the other two species shows noticeable "goose-like grazing" features. Moreover, C. Cygnus has the most powerful beak. These features are due to the history of species. The formation of C. olor occurred during the Miocene-Pliocene of the Palaearctic in the warm eutrophic marine lagoons of the Paratethys with abundant soft submerged vegetation. The evolution of C. cygnus and C. c. bewickii took place in Pleistocene. At that time, periglacial and thermokarst water bodies on permafrost became widespread in the Palearctic, as well as dystrophic peat lakes with much poorer submerged aquatic vegetation, but well-developed coastal and semi-submerged vegetation.


Assuntos
Anseriformes , Melhoramento Vegetal , Animais , Filogenia , Dieta , Patos , Água
4.
Environ Monit Assess ; 196(1): 23, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062205

RESUMO

Digital soil maps find application in numerous fields, making their accuracy a crucial factor. Mapping soil properties in homogeneous landscapes where the soil surface is concealed, as in forests, presents a complex challenge. In this study, we evaluated the spatial distribution of soil organic carbon stocks (SOCstock) under forest vegetation using three methods: regression kriging (RK), random forest (RF), and RF combined with ordinary kriging of residuals (RFOK) in combination with Sentinel-2A satellite data. We also compared their accuracies and identified key influencing factors. We determined that SOCstock ranged from 0.6 to 10.9 kg/m2 with an average value of 4.9 kg/m2. Among the modelling approaches, we found that the RFOK exhibited the highest accuracy (RMSE = 1.58 kg/m2, NSE = 0.33), while the RK demonstrated a lack of spatial correlation of residuals, rendering this method inapplicable. An analysis of variable importance revealed that the SWIR B12 band of the Sentinel-2A satellite contributed the most to RFOK predictions. We concluded that the RFOK hybrid approach outperformed the others, potentially serving as a foundation for digital soil mapping under similar environmental conditions. Therefore, it is essential to consider spatial correlations when mapping soil properties in ecosystems that are inaccessible for capturing the spectral response of the soil surface.


Assuntos
Carbono , Solo , Carbono/análise , Ecossistema , Monitoramento Ambiental , Análise Espacial
5.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139226

RESUMO

Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.


Assuntos
Fabaceae , Rhizobium , Humanos , Fabaceae/metabolismo , Simbiose/fisiologia , Rhizobium/fisiologia , Fixação de Nitrogênio , Estudos Prospectivos , Verduras , Produtos Agrícolas , Nódulos Radiculares de Plantas/metabolismo
6.
Plants (Basel) ; 12(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836240

RESUMO

The carbon isotopic composition of plant tissues is a diagnostic feature of a number of physiological and ecological processes. The most important of which is the type of photosynthesis. In epiphytes, two peaks of δ13C values are known to correspond to C3 and CAM photosynthesis and some variants of transitional forms between them. But the diagnosis of δ13C may not be limited to the type of photosynthesis. This makes it necessary to study trends in the distribution of δ13C in a broader ecological context. In this study, we present trends in the distribution of δ13C epiphytes and other structurally dependent plants and their relationship with other isotopic and elemental parameters (δ15N, C%, N%, and C/N) and with life forms of epiphytes, taxonomic or vertical groups in crowns (synusia), and the parameters of the trees themselves. In all communities except for the moss forest, δ13C in epiphyte leaves was significantly higher (less negative) than in phorophyte leaves. In general, δ13C in epiphytes in mountain communities (pine forest and moss forest) was more negative than in other communities due to the absence of succulents with CAM. δ13C in the leaves of all epiphytes was negatively related to the percentage of carbon and δ15N in the leaves of the phorophyte. When considering the Gaussian distributions of δ13C with the method of modeling mixtures, we observe the unimodal, bimodal, and trimodal nature of the distribution.

7.
Water Res ; 245: 120546, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688855

RESUMO

Understanding the historical patterns of phosphorus (P) cycling is essential for sustainable P management and eutrophication mitigation in watersheds. Currently, there is a lack of long-term watershed-scale models that analyze the flow of P substances and quantify the socioeconomic patterns of P flow. This study adopted a watershed perspective and incorporated crucial economic and social subsystems related to P production, consumption, and emissions throughout the entire life cycle. Based on this approach, a bottom-up watershed P flow analysis model was developed to quantify the P cycle for the first time in the Poyang Lake watershed from 1950 to 2020 and to explore the driving factors that influence its strength by analyzing multi-year P flow results. In general, the P cycle in the Poyang Lake watershed was no longer a naturally dominated cycle but significantly influenced by human activities during the flow dynamics between 1950 and 2015. Agricultural intensification and expansion of large-scale livestock farming continue to enhance the P flow in the study area. Fertilizer P inputs from cultivation account for approximately 60% of the total inputs to farming systems, but phosphate fertilizer utilization continues to decline. Feed P inputs have continued to increase since 2007. The expansion of large-scale farming and the demand for urbanization are the main factors leading to changes in feed P input patterns. The P utilization rate for livestock farming (PUEa) is progressively higher than international levels, with PUEa increasing from 0.64% (1950) to 9.7% (2020). Additionally, per capita food P consumption in the watershed increased from 0.67 kg to 0.80 kg between 1950 and 2020. The anthropogenic P emissions have increased from 1.67 × 104 t (1950) to 8.73 × 104 t (2020), with an average annual growth rate of 2.41%. Watershed-wide P pollution emissions have increased by more than five-fold. Population growth and agricultural development are important drivers of structural changes in P flows in the study area, and they induce changes in social conditions, including agricultural production, dietary structure, and consumption levels, further dominating the cyclic patterns of P use, discharge, and recycling. This study provides a broader and applicable P flow model to measure the characteristics of the P cycle throughout the watershed social system as well as provides methodological support and policy insights for large lakes in rapidly developing areas or countries to easily present P flow structures and sustainably manage P resources.

8.
Insects ; 14(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367373

RESUMO

As the world's population continues to increase, ensuring food security becomes a major problem. This often leads to the expansion of agricultural production, even in harsh conditions and becomes a key problem for many countries, including Russia. However, such expansion may entail certain costs, including the potential loss of insect populations, which are vital for ecological balance and agricultural productivity. The development of fallow lands in these regions is necessary to increase food production and increase food security; it is important to balance this with protection from harmful insects and sustainable farming methods. Research into the effects of insecticides on insects is an ongoing challenge, and new, sustainable farming methods are needed to ensure that protection from harmful insects and sustainable development can coexist. This article discusses the use of pesticides to protect the well-being of mankind, the problems of studying the effects of pesticides on insects and the vulnerability of insects to pesticides in regions with harsh conditions. It also discusses successful methods of sustainable agriculture and the importance of the legal framework governing the use of pesticides. The article emphasises the importance of balanced development with insect protection to ensure the sustainability of agricultural expansion in harsh conditions.

9.
Microorganisms ; 11(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985294

RESUMO

Restoration of anthropogenically disturbed soils is an urgent problem in modern ecology and soil biology. Restoration processes in northern environments are especially important, due to the small amounts of fertile land and low levels of natural succession. We analyzed the soil microbiota, which is one of the indicators of the succession process is the soil. Samples were obtained from three disturbed soils (self-overgrown and reclaimed quarries), and two undisturbed soils (primary and secondary forests). Primary Forest soil had a well-developed soil profile, and a low pH and TOC (total organic carbon) amount. The microbial community of this soil had low richness, formed a clear remote cluster in the beta-diversity analysis, and showed an overrepresentation of Geobacter (Desulfobacteriota). Soil formation in clay and limestone abandoned quarries was at the initial stage, and was caused by both a low rate of mineral profile formation and severe climatic conditions in the region. Microbial communities of these soils did not have specific abundant taxa, and included a high amount of sparse taxa. Differences in taxa composition were correlated with abiotic factors (ammonium concentration), which, in turn, can be explained by the parent rock properties. Limestone quarry reclaimed by topsoil coverage resulted in an adaptation of the top soil microbiota to a novel parent rock. According to the CCA analysis, the microbial composition of samples was connected with pH, TOC and ammonium nitrogen concentration. Changes in pH and TOC were connected with ASVs from Chloroflexota, Gemmatimonadota and Patescibacteria. ASVs from Gemmatimonadota also were correlated with a high ammonium concentration.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36900858

RESUMO

One of the main reservoirs depositing various classes of pollutants in high latitude regions are wetland ecosystems. Climate warming trends result in the degradation of permafrost in cryolitic peatlands, which exposes the hydrological network to risks of heavy metal (HM) ingress and its subsequent migration to the Arctic Ocean basin. The objectives included: (1) carrying out a quantitative analysis of the content of HMs and As across the profile of Histosols in background and technogenic landscapes of the Subarctic region, (2) evaluating the contribution of the anthropogenic impact to the accumulation of trace elements in the seasonally thawed layer (STL) of peat deposits, (3) discovering the effect of biogeochemical barriers on the vertical distribution of HMs and As. The analyses of elements were conducted by atom emission spectroscopy with inductively coupled plasma, atomic absorption spectroscopy and scanning electron microscopy with an energy-dispersive X-ray detecting. The study focused on the characteristics of the layer-by-layer accumulation of HMs and As in hummocky peatlands of the extreme northern taiga. It revealed the upper level of microelement accumulation to be associated with the STL as a result of aerogenic pollution. Specifically composed spheroidal microparticles found in the upper layer of peat may serve as indicators of the area polluted by power plants. The accumulation of water-soluble forms of most of the pollutants studied on the upper boundary of the permafrost layer (PL) is explained by the high mobility of elements in an acidic environment. In the STL, humic acids act as a significant sorption geochemical barrier for elements with a high stability constant value. In the PL, the accumulation of pollutants is associated with their sorption on aluminum-iron complexes and interaction with the sulfide barrier. A significant contribution of biogenic element accumulation was shown by statistical analysis.


Assuntos
Poluentes Ambientais , Metais Pesados , Ecossistema , Metais Pesados/análise , Solo/química , Ferro/análise , Poluentes Ambientais/análise
11.
Molecules ; 29(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202687

RESUMO

Free radicals (FRs) are intermediate participants in the transformation process of soil organic matter, and free radical activity is a fundamental property of humic substances. The aim of this work was to conduct a comparative study of the paramagnetic properties of humic acids (HAs) isolated from Histosols by electron paramagnetic resonance (EPR) spectroscopy. The studied Histosols are found in permafrost peatlands in four natural geographic subzones of the European Arctic (from forest tundra to northern tundra). The results obtained showed that in anaerobic conditions on the peatlands in the tundra zone, the formation of semiquinone-type radicals occurs through the reduction of quinone fragments of HAs and leads to an increase in the concentration of paramagnetic centres within HAs. PCA analysis allowed us to reveal relationships between the properties of the initial raw peat samples, the molecular composition of the isolated HAs, and their paramagnetic parameters. It was found that FR localization occurs predominantly on aromatic fragments of lignin nature, which are confined to the low molecular weight fraction of HAs. The g-factor values of the EPR spectra of HAs indicate the presence of carbon- and oxygen-centred FRs in the HA structure, with a predominance of the latter.

12.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501329

RESUMO

The use of conservation agriculture (SWC-soil and water conservation) technologies is now becoming more and more necessary. For the soils in arid ecosystems, the problem of irrigation deficiencies has always been relevant, and clean fresh water is always insufficient to irrigate these agricultural lands. This paper provides a brief historical overview of the use of mineralized water sources in agriculture and their impacts on soils and plants (Triticum aestivum L.). The experiment involving wheat cultivation in saline soils irrigated with mineralized water was set for 3 years. The main chemical and physical-chemical properties of the agro-transformed solonchaks and mineralized water sources were investigated. According to the contents of mobile forms of N, P, and K, the soils were poorly supplied; after a series of irrigation phases, they remained the same. There were signs of the growth of mobile phosphorus in the variants where mineralized water sources were applied. Our results showed that under conditions of irrigation with water sources with mineralization rates of up to 2.8-3.5 g/L, the wheat yield increased by 1.5 c/ha compared to the control. The use of mineralized water for irrigation purposes will reduce the use of clean river water.

13.
Microorganisms ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363763

RESUMO

Chernevaya taiga in West Siberia is a unique environment, with gigantism of grasses and shrubs. Exceptionally high productivity of plants is determined by the synergistic interaction of various factors, with a special role belonging to microorganisms colonizing the plant roots. This research explored whether agricultural plants can recruit specific microorganisms from within virgin Chernevaya Umbrisol and thus increase their productivity. Radish and wheat plants were grown on the Umbrisol (T1) and control Retisol of Scotch pine forest stand (T3) soils in the phytotron, and then a bacterial community analysis of the rhizosphere was performed using high-throughput sequencing of the 16S rRNA genes. In laboratory experiments, the plant physiological parameters were significantly higher when growing on the Umbrisol as compared to the Retisol. Bacterial diversity in T1 soil was considerably higher than in the control sample, and the principal coordinate analysis demonstrated apparent differences in the bacterial communities associated with the plants. Agricultural plants growing in the T1 soil form specific prokaryotic communities, with dominant genera Chthoniobacter, Pseudomonas, Burkholderia, and Massilia. These communities also include less abundant but essential for plant growth nitrifiers Cand. Nitrosocosmius and Nitrospira, and representatives of Proteobacteria, Bacilli, and Actinobacteria, known to be gibberellin-producers.

14.
BMC Microbiol ; 22(1): 237, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195831

RESUMO

Processes of soil restoration in anthropogenically disturbed soils is an urgent topic in modern ecology and nature management. Being mediator between mineral soil composition and plant vegetation, soil microbial community is important factor of soil restoration processes. Analysis of main soil nutrition components followed by 16S amplicon sequencing are sufficient methods for primary analysis of novel locations. Here is the primary analysis in a novel location in Northwest Europe (Russia). Main nutrition parameters (pH, P, Na and NH4+) and 16S rDNA Illumina amplicons were explored in abandoned soils from sandy pit quarry (2 sites) and refractory clay mining dumps (4 sites).Microbial communities of mature soils and dumps are variable and different in terms both nutritional and microbial components. pH, N and TOC are strong predictors for microbial composition. Dumps of refractory clays pQ_2 are non-developed soils, highly acidic and form specific microbial community. Differences between dumps and mature soils in both pre-quaternary and quaternary soils are connected with specific bacterial taxa. Those taxa are connected more with plant composition, not the soil properties themselves. The exact changes in microbial community are unique for different soils and areas.


Assuntos
Microbiologia do Solo , Solo , Argila , DNA Ribossômico , RNA Ribossômico 16S/genética , Solo/química
15.
Plants (Basel) ; 11(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807579

RESUMO

The article provides an analysis of the cenopopulation and tissues element composition of the medicinal caper plant Capparis spinosa L. distributed on Calcisols formed on eroded alluvial-proluvial gravel textured rocks in the south of the Fergana Valley (Uzbekistan, Central Asia). The predominance of immature plants in the cenopopulation was detected in the Arsif hills massive, and quantitative indicators of micronutrients in the vegetative and generative organs of C. spinosa L. were determined. The study of biomorphological characteristics of the plant during the growing season (April-October) was carried out in the identified 10 observational experimental field populations. The cenopopulation dynamics and plant development patterns of Capparis spinosa L. were characterized for environmental conditions of south Uzbekistan for the first time. Soil, plant element analysis was performed by neutron-activation method. In this case, the samples were irradiated in a nuclear reactor with a neutron flux of 5 × 1013 neutrons/cm2 s, and their quantities were determined in accordance with the half-life of chemical elements. It has also been compared with research materials conducted by world scientists on the importance and pharmacological properties of botanicals in medicine and the food industry, as well as their botanical characteristics. The plant can serve to conserve soil resources, as it prevents water and wind erosion of dense clay soils in the dry subtropical climate of Central Fergana and could be considered an effective agent of destroyed soils remediation. The development of this plant will contribute to the diversification of agriculture in Uzbekistan (Central Asia) and the development of the food industry and pharmacology.

16.
Front Plant Sci ; 13: 894647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720525

RESUMO

Background and Aims: In the roots of most vascular plants, the growth zone is small, the meristem and the elongation zone are sharply separated, and only meristematic cells divide. This statement is based almost entirely on studies with soil-rooted plants. Whether aerial roots of structurally dependent (=epiphytic/hemiepiphytic) species differ is virtually unexplored. Methods: Growth of aerial roots in 20 structurally dependent plant species from eight families was studied ex situ. In 12 species, we studied the anatomical structure and distribution of cortex cell lengths and rhizoderm in the growth zone. Key Results: All the studied aerial roots had an open apical meristem, and mitoses were not restricted to the meristem. In contrast to belowground roots, relative growth rate did not strongly increase upon transition to the elongation zone, while elongating growth was often prolonged. Still, the relative growth rate was lower than in belowground roots in soil, and in different species, it did not change considerably compared to each other. Conclusions: A distinct elongation zone with rapid cell growth was missing in the studied aerial roots. Rather, there was a growth zone in which division, growth, and differentiation co-occurred. We observed a generally low relative growth rate in aerial roots and a surprisingly similar initial growth pattern in spite of the diversity in taxonomy and ecology, which resembled initial cellular growth in leaves, stems, and fleshy dicotyledonous fruit.

17.
PLoS One ; 17(2): e0263135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180237

RESUMO

Creation of artificial forest plantations on a global scale is one of the ways to mitigate the negative effects of climate change on ecosystems, at the same time providing soil protection from erosion, regulation of the hydrological regime and carbon sequestration in soils of different natural and climatic zones. However, the change of the dominant plant community cause significant ecosystem changes, reflecting at the structure and functioning of the soil microbial complex as well. The shifts in prokaryotic community of the meadow soil resulting from the conversion of the native meadow (further grassland) phytocenosis to the artificial forest plantations was investigated with the use of NGS sequencing technology and metabarcoding approach-amplicon sequencing of V4 region of 16 S rRNA (performed on Illumina Miseq platform). The identified shifts in taxonomic structure and diversity may be the result of changes in the physic-chemical conditions of soils and, on the other hand, may serve as indicators of such changes. Cultivation of larch led to an increase in the diversity of the prokaryotic community and its stratification by depth. The acidifying effect of larch manifested itself in an increase in the proportion and diversity of acidobacteria, in the abundance of oligotrophic microorganisms of phyla Chloroflexi, Firmicutes, and a simultaneous comparative decrease in the bacteria of Verrucomicrobia phylum, alphaproteobacteria of or. Rhizobiales and Burkholderiales. The absence of clearly expressed dominants in the prokaryotic community, as well as a significant increase in alpha-diversity indices, compared with the control plot of native mountain-meadow soil under grassland vegetation, suggests a transitional nature of the soil ecosystem of artificial forest plantations.


Assuntos
Bactérias/classificação , Bactérias/genética , Florestas , Pradaria , Larix/crescimento & desenvolvimento , Microbiologia do Solo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , RNA Ribossômico 16S/genética , Solo/química
18.
Insects ; 14(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36661949

RESUMO

The Holarctic genus Manica Jurine, 1807 are mysterious and primitive ants from the tribe Myrmicini of the subfamily Myrmicinae. The first fossil species of this genus, †Manica andrannae Zharkov and Dubovikoff, sp. n. is described from the Baltic amber (ca. 33.9-37.8 million years ago). X-ray microcomputed tomography (µCT) was used to access morphological features and accurately measure the new species. A straightened and painted 3D model is also proposed as a reconstruction of the worker. The new species differs from all extant species of the genus by the propodeum with a weakly convex dorsum and short, blunt tubercles, and by more angular petiolar node. These features bring it closer to sister genus Myrmica Latreille, 1804. The phylogenetic relationships of the new species with other species of the genus are discussed. Based on the studied morphological features, the species is closest to the species Manica yessensis Azuma, 1955. The early evolution and paleobiogeography of the tribe Myrmicini are discussed. This finding confirms the origin of the genus Manica at least in the Eocene epoch.

19.
Microorganisms ; 9(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064848

RESUMO

Microbial biodiversity parameters for tropical rainforests remain poorly understood. Whilst the soil microbiome accounts up to 95% of the total diversity of microorganisms in terrestrial ecosystems, the microbiome of suspended soils formed by vascular epiphytes remains completely unexplored. Samples of ground and suspended soils were collected in Cat Tien National Park, southern Vietnam. DNA extraction and sequencing were performed, and libraries of 16s rDNA gene sequences were analyzed. Alpha diversity indices of the microorganisms were the highest in the forest ground soil. In general, the microbiological diversity of all the soil types was found to be similar at the phylum level. Taxonomic composition of the bacterial communities in the suspended soils of plants from the same species are not closer than the taxonomic compositions of the communities in the suspended soils of different plant species. However, the beta diversity analysis revealed significant differences in the movement of mineral elements in terrestrial versus suspended soils. Our data showed that the suspended soils associated with vascular epiphytes were a depository of unique microbiological biodiversity. A contributing factor was the presence of large amounts of organic matter in the suspended soils-deposits collected by the epiphytes-which would have been degraded by termites if it had reached the ground. Further, the nutrient content of the suspended soils was prime for soil respiration activity and taxonomic microbial community biodiversity.

20.
PeerJ ; 9: e10871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643711

RESUMO

Rendzic Leptosols are intrazonal soils formed on limestone bedrock. The specialty of these soils is that parent rock material is more influential in shaping soil characteristics than zonal factors such as climate, especially during soil formation. Unlike fast evolving Podzols due to their leaching regime, Leptosols do not undergo rapid development due to the nature of the limestone. Little is known how microbiome reflects this process, so we assessed microbiome composition of Rendzic Leptosols of different ages, arising from disruption and subsequent reclamation. The mountains and foothills that cover much of the Crimean Peninsula are ideal for this type of study, as the soils were formed on limestone and have been subjected to anthropogenic impacts through much of human history. Microbiomes of four soil sites forming a chronosequence, including different soil horizons, were studied using sequencing of 16S rRNA gene libraries and quantitative PCR. Dominant phyla for all soil sites were Actinobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, Thaumarchaeota, Planctomycetes, Verrucomicrobia and Firmicutes. Alpha diversity was similar across sites and tended to be higher in topsoil. Beta diversity showed that microbiomes diverged according to the soil site and the soil horizon. The oldest and the youngest soils had the most similar microbiomes, which could have been caused by their geographic proximity. Oligotrophic bacteria from Chitinophagaceae, Blastocatellaceae and Rubrobacteriaceae dominated the microbiome of these soils. The microbiome of 700-year old soil was the most diverse. This soil was from the only study location with topsoil formed by plant litter, which provided additional nutrients and could have been the driving force of this differentiation. Consistent with this assumption, this soil was abundant in copiotrophic bacteria from Proteobacteria and Actinobacteria phyla. The microbiome of 50-year old Leptosol was more similar to the microbiome of benchmark soil than the microbiome of 700-year old soil, especially by weighted metrics. CCA analysis, in combination with PERMANOVA, linked differences in microbiomes to the joint change of all soil chemical parameters between soil horizons. Local factors, such as parent material and plant litter, more strongly influenced the microbiome composition in Rendzic Leptosols than soil age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA