Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 139: 104964, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688170

RESUMO

The open reading frame 8 (ORF8) protein of SARS-CoV-2 has been implicated in the onset of cytokine storms, which are responsible for the pathophysiology of COVID-19 infection. The present study investigated the potential of isolated compounds from Clerodendrum volubile leaves to stall oxidative bursts in vitro and interact with ORF8 mRNA segments of the SARS-CoV-2 whole genome using computational tools. Five compounds, namely, harpagide, 1-(3-methyl-2-butenoxy)-4-(1-propenyl)benzene, ajugoside, iridoid glycoside and erucic acid, were isolated from C. volubile leaves, and their structures were elucidated using conventional spectroscopy tools. Iridoid glycoside is being reported for the first time and is thus regarded as a new compound. The ORF8 mRNA sequences of the translation initiation sites (TIS) and translation termination sites (TTSs) encoding ORF8 amino acids were retrieved from the full genome of SARS-CoV-2. Molecular docking studies revealed strong molecular interactions of the isolated compounds with the TIS and TTS of ORF8 mRNA. Harpagide showed the strongest binding affinity for TIS, while erucic acid was the strongest for TTS. The immunomodulatory potentials of the isolated compounds were investigated on neutrophil phagocytic respiratory bursts using luminol-amplified chemiluminescence technique. The compounds significantly inhibited oxidative burst, with 1-(3-methyl-2-butenoxy)-4-(1-propenyl)benzene having the best activity. Ajugoside and erucic acid showed significant inhibitory activity on T-cell proliferation. These results indicate the potential of C. volubile compounds as immunomodulators and can be utilized to curb cytokine storms implicated in COVID-19 infection. These potentials are further corroborated by the strong interactions of the compounds with the TIS and TTS of ORF8 mRNA from the SARS-CoV-2 whole genome.


Assuntos
COVID-19 , Clerodendrum , Humanos , Simulação de Acoplamento Molecular , Fases de Leitura Aberta , Folhas de Planta , RNA Mensageiro/genética , SARS-CoV-2
2.
Front Pharmacol ; 12: 736511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539415

RESUMO

The possible evolutionary trend of COVID-19 in South Africa was investigated by comparing the genome of SARS-CoV-2 isolated from a patient in KwaZulu-Natal, South Africa with those isolated from China, Spain, Italy, and United States, as well as the genomes of Bat SARS CoV, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Mouse Hepatitis Virus (MHV), and Infectious Bronchitis Virus (IBV). Phylogenetic analysis revealed a strong homology (96%) between the genomes of SARS-CoV-2 isolated from KwaZulu-Natal, South Africa and those isolated from the study countries as well as those isolated from bat SARS CoV, MERS-CoV, MHV and IBV. The ability of phytocannabinoids from Cannabis sativa infusion to interact with gene segments (mRNAs) coding for proteins implicated in viral replication, assembly and release were also investiagted using computational tools. Hot water infusion of C. sativa leaves was freeze-dried and subjected to Gas Chromatography-Mass Spectroscopy analysis which revealed the presence of tetrahydrocannabivarin, cannabispiran, cannabidiol tetrahydrocannabinol, cannabigerol, and cannabinol. Molecular docking analysis revealed strong binding affinities and interactions between the phytocannabinoids and codon mRNAs for ORF1ab, Surface glycoprotein, Envelope protein and Nucleocapsid phosphoprotein from SARS-CoV-2 whole genome which may be due to chemico-biological interactions as a result of nucleophilic/electrophilic attacks between viral nucleotides and cannabinoids. These results depict the spread of SARS-CoV-2 is intercontinental and might have evolved from other coronaviruses. The results also portray the phytocannabinoids of C. sativa infusion as potential therapies against COVID-19 as depicted by their ability to molecularly interact with codon mRNAs of proteins implicated in the replication, translation, assembly, and release of SARS-CoV-2. However, further studies are needed to verify these activities in pre-clinical and clinical studies.

3.
Hum Exp Toxicol ; 40(12_suppl): S125-S136, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34289748

RESUMO

BACKGROUND: Evidences are beginning to accrue that flavonoids, particularly phytoestrogens, could have beneficial effects against several age-related diseases linked to estrogen deficiency including postmenopausal osteoporosis. METHODS: In this study, the effect of chrysin on selected bone-remodeling markers in ovariectomized rats and its estrogen-like activity in silico were investigated. RESULTS: The data indicated that administration of chrysin at 50 mg/kg and 100 mg/kg for 6 weeks to OVX rats significantly (p < 0.05) prevented body weight gain and partially reverse uterine weight loss. In addition, treatment of OVX rats significantly (p < 0.01) increased femur dry weight, femur ash weight, bone ash calcium, and phosphorous levels in a dose-dependent manner. However, there was significant (p < 0.001) decline in serum estradiol level in all OVX rats compared to the sham-operated group. Interestingly, administration of chrysin significantly (p < 0.05) reversed the reduction of estradiol induced by ovariectomy compared to untreated OVX rats. Moreover, administration of chrysin to OVX rats significantly (p < 0.05) suppressed excessive elevation of bone-remodeling markers expression compared to untreated OVX rats. Similarly, molecular docking analysis revealed that chrysin interacts with both α and ß estrogen receptors with exothermic binding energies of -229.83 kcal/Mol and -252.72 kcal/Mol, respectively, and also fits perfectly into the active site of both α and ß estrogen receptors. CONCLUSION: This study demonstrated that chrysin exhibits potential antiosteoporotic effects against bone loss in OVX rats through enhanced bone mineral contents and preventing excessive elevation of bone-remodeling markers and bone-resorbing cytokine.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Estrogênios/farmacologia , Flavonoides/farmacologia , Ovariectomia , Animais , Biomarcadores/metabolismo , Conservadores da Densidade Óssea/farmacologia , Simulação por Computador , Feminino , Humanos , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/prevenção & controle , Ratos , Ratos Wistar
4.
Virusdisease ; 31(3): 388-394, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32904877

RESUMO

Rabies virus infection is an endemic disease which remains central to public health issues. The presence of epigenetics associated with the over-expression of B7-H1 in mice brain infected with rabies virus was investigated for the first time. A significant increase (p < 0.05) in mRNA level of B7-H1 as the disease progressed was observed. The percentage of methylated region was significantly (p < 0.05) higher in infected tissues relative to uninfected. DNA methyltransferase (DNMT) and histone acetylase (HAT) activities were also significantly (p < 0.05) higher in most infected brain tissues. HAT had a relatively higher proportion than DNMT when compared to the normal. Paradoxically, it can be inferred that the rabies virus uses epigenetic mechanisms as a means of manipulating host genes, as there was an increase in global DNMT and HAT activities with concomitant increase in B7-H1 promoter methylation and expression.

5.
Metab Brain Dis ; 35(5): 819-827, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172520

RESUMO

As feared and deadly human diseases globally, Rabies virus contrived mechanisms to escape early immune recognition via suppression of the interferon response. This study, preliminarily investigated whether Rabies virus employs epigenetic mechanism for the suppression of the interferon using the Challenge virus standard (CVS) strain and Nigerian street Rabies virus (SRV) strain. Mice were challenged with Rabies virus (RABV) infection, and presence of RABV antigen was assessed by direct fluorescent antibody test (DFAT). A real time quantitative Polymerase chain reaction (qRT-PCR) was used to measure the expression of type II interferon gamma (IFNG) and methylation specific quantitative PCR for methylation analysis of 1FNG promoter region. Accordingly, DNA methyltransferase (DNMT) and histone acetyltransferase (HAT) enzymes activities were determined. RABV antigen was detected in all infected samples. A statistically significant increase (p < 0.05) in mRNA level of IFNG was observed at the onset of the disease and a decrease as the disease progressed. An increase in methylation in the test groups from the control group was observed, with a fluctuation in methylation as the disease progressed. DNMT and HAT activities also agree with methylation as there was an observed increase activity in test group compared with control group. Similar fluctuation pattern was observed in both CVS and SRV groups as the disease progressed with HAT, being the most active proportionally. This study suggests that epigenetic modification via DNA methylation and histone acetylation may have played a role in the expression of type II interferon gamma in Rabies virus infection. Graphical abstract.


Assuntos
Epigênese Genética/genética , Interferon gama/genética , Raiva/metabolismo , Animais , Antígenos Virais/biossíntese , Antígenos Virais/genética , DNA (Citosina-5-)-Metiltransferase 1/biossíntese , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Interferon gama/biossíntese , Camundongos , Raiva/imunologia , Vírus da Raiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA