Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(5): e2021GL097131, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35866067

RESUMO

Annual forest area burned (AFAB) in the western United States (US) has increased as a positive exponential function of rising aridity in recent decades. This non-linear response has important implications for AFAB in a changing climate, yet the cause of the exponential AFAB-aridity relationship has not been given rigorous attention. We investigated the exponential AFAB-aridity relationship in western US forests using a new 1984-2019 database of fire events and 2001-2020 satellite-based records of daily fire growth. While forest-fire frequency and duration grow linearly with aridity, the exponential AFAB-aridity relationship results from the exponential growth rates of individual fires. Larger fires generally have more potential for growth due to more extensive firelines. Thus, forces that promote fire growth, such as aridification, have more potent effects on larger fires. As aridity increases linearly, the potential for growth of large fires accelerates, leading to exponential increases in AFAB.

2.
Science ; 342(6164): 1360-4, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24292627

RESUMO

Trends in streamflow timing and volume in the Pacific Northwest United States have been attributed to increased temperatures, because trends in precipitation at lower-elevation stations were negligible. We demonstrate that observed streamflow declines are probably associated with declines in mountain precipitation, revealing previously unexplored differential trends. Lower-troposphere winter (November to March) westerlies are strongly correlated with high-elevation precipitation but weakly correlated with low-elevation precipitation. Decreases in lower-tropospheric winter westerlies across the region from 1950 to 2012 are hypothesized to have reduced orographic precipitation enhancement, yielding differential trends in precipitation across elevations and contributing to the decline in annual streamflow. Climate projections show weakened lower-troposphere zonal flow across the region under enhanced greenhouse forcing, highlighting an additional stressor that is relevant for climate change impacts on hydrology.


Assuntos
Altitude , Mudança Climática , Rios , Recursos Hídricos , Efeito Estufa , Noroeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA