RESUMO
Selecting an appropriate anode material (AM) has been considered to be a crucial initial step in advancing high-performance batteries. Within this piece of research, we examine the suitability of the BC6NA monolayer (referred to as BC6NAML) as an AM by first-principles calculations. The BC6NAML exhibits metallic behavior consistently, even with varying concentrations of Na atoms, making it an ideal choice for battery usages. Our findings revealed that the theoretical storage capacity for Na-adhered BC6NAML was 406.36 mAhg-1, surpassing graphite, TiO2, BC6NA, and numerous other 2D materials. The BC6NAML also demonstrates a diffusion barrier of 0.39 eV and favorable diffusivity of Na-ions. Although the open-circuit voltage (OCV) of BC6NAML was temperate and lower compared to the OCV of other AMs like TiO2, our results suggested that it is possible to utilize BC6NAML as one of the encouraging host materials for sodium-ion batteries (SIBs). Consequently, this investigation into the potential anodic application of BC6NAML proves valuable for future experimental studies into sodium storage for SIBs.