Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929452

RESUMO

This study examined changes in the activity patterns of tropical dairy cows during the transition period to assess their potential for predicting calving days. This study used the AfiTag-II biosensor to monitor activity, rest time, rest per bout, and restlessness ratio in 298 prepartum and 347 postpartum Holstein Friesian cows across three lactation groups (1, 2, and ≥3). The data were analyzed using generalized linear mixed models in SPSS, and five machine learning models, including random forest, decision tree, gradient boosting, Naïve Bayes, and neural networks, were used to predict the calving day, with their performance evaluated via ROC curves and AUC metrics. For all lactations, activity levels peak on the calving day, followed by a gradual return to prepartum levels within two weeks. First-lactation cows displayed the shortest rest duration, with a prepartum rest time of 568.8 ± 5.4 (mean ± SE), which is significantly lower than higher-lactation animals. The random forest and gradient boosting displayed an effective performance, achieving AUCs of 85% and 83%, respectively. These results indicate that temporal changes in activity behavior have the potential to be a useful indicator for calving day prediction, particularly in tropical climates where seasonal variations can obscure traditional prepartum indicators.

2.
Front Plant Sci ; 14: 1228084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780513

RESUMO

Introduction: Water is one of the important factors affecting the yield of leafy vegetables. Lettuce, as a widely planted vegetable, requires frequent irrigation due to its shallow taproot and high leaf evaporation rate. Therefore, screening drought-resistant genotypes is of great significance for lettuce production. Methods: In the present study, significant variations were observed among 13 morphological and physiological traits of 42 lettuce genotypes under normal irrigation and water-deficient conditions. Results: Frequency analysis showed that soluble protein (SP) was evenly distributed across six intervals. Principal component analysis (PCA) was conducted to transform the 13 indexes into four independent comprehensive indicators with a cumulative contribution ratio of 94.83%. The stepwise regression analysis showed that root surface area (RSA), root volume (RV), belowground dry weight (BDW), soluble sugar (SS), SP, and leaf relative water content (RWC) could be used to evaluate and predict the drought resistance of lettuce genotypes. Furthermore, the drought resistance ranks of the genotypes were similar according to the drought resistance comprehensive evaluation value (D value), comprehensive drought resistance coefficient (CDC), and weight drought resistance coefficient (WDC). The cluster analysis enabled the division of the 42 genotypes into five drought resistance groups; among them, variety Yidali151 was divided into group I as a strongly drought-resistant variety, group II included 6 drought-resistant genotypes, group III included 16 moderately drought-resistant genotypes, group IV included 12 drought-sensitive genotypes, and group V included 7 highly drought-sensitive genotypes. Moreover, a representative lettuce variety was selected from each of the five groups to verify its water resistance ability under water deficit conditions. In the drought-resistant variety, it was observed that stomatal density, superoxide anion (O2.-wfi2) production rate, and malondialdehyde (MDA) content exhibited a low increase rate, while catalase (CAT), superoxide dismutase (SOD), and that peroxidase (POD) activity exhibited a higher increase than in the drought-sensitive variety. Discussion: In summary, the identified genotypes are important because their drought-resistant traits can be used in future drought-resistant lettuce breeding programs and water-efficient cultivation.

3.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762179

RESUMO

The deleterious effects of drought stress have led to a significant decline in vegetable production, ultimately affecting food security. After sensing drought stress signals, vegetables prompt multifaceted response measures, eventually leading to changes in internal cell structure and external morphology. Among them, it is important to highlight that the changes, including changes in physiological metabolism, signal transduction, key genes, and hormone regulation, significantly influence drought stress tolerance in vegetables. This article elaborates on vegetable stress tolerance, focusing on structural adaptations, key genes, drought stress signaling transduction pathways, osmotic adjustments, and antioxidants. At the same time, the mechanisms of exogenous hormones such as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) toward improving the adaptive drought tolerance of vegetables were also reviewed. These insights can enhance the understanding of vegetable drought tolerance, supporting vegetable tolerance enhancement by cultivation technology improvements under changing climatic conditions, which provides theoretical support and technical reference for innovative vegetable stress tolerance breeding and food security.


Assuntos
Secas , Verduras , Melhoramento Vegetal , Resistência à Seca , Hormônios
4.
Gondwana Res ; 114: 30-39, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35529075

RESUMO

Globally, wildfires have seen remarkable increase in duration and size and have become a health hazard. In addition to vegetation and habitat destruction, rapid release of smoke, dust and gaseous pollutants in the atmosphere contributes to its short and long-term detrimental effects. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has emerged as a public health concern worldwide that primarily target lungs and respiratory tract, akin to air pollutants. Studies from our lab and others have demonstrated association between air pollution and COVID-19 infection and mortality rates. However, current knowledge on the impact of wildfire-mediated sudden outburst of air pollutants on COVID-19 is limited. In this study, we examined the association of air pollutants and COVID-19 during wildfires burned during August-October 2020 in California, United States. We observed an increase in the tropospheric pollutants including aerosols (particulate matter [PM]), carbon monoxide (CO) and nitrogen dioxide (NO2) by approximately 150%, 100% and 20%, respectively, in 2020 compared to the 2019. Except ozone (O3), similar proportion of increment was noticed during the peak wildfire period (August 16 - September 15, 2020) in the ground PM2.5, CO, and NO2 levels at Fresno, Los Angeles, Sacramento, San Diego and San Francisco, cities with largest active wildfire area. We identified three different spikes in the concentrations of PM2.5, and CO for the cities examined clearly suggesting wildfire-induced surge in air pollution. Fresno and Sacramento showed increment in the ground PM2.5, CO and NO2 levels, while San Diego recorded highest change rate in NO2 levels. Interestingly, we observed a similar pattern of higher COVID-19 cases and mortalities in the cities with adverse air pollution caused by wildfires. These findings provide a logical rationale to strategize public health policies for future impact of COVID-19 on humans residing in geographic locations susceptible to sudden increase in local air pollution.

5.
Biomolecules ; 12(10)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291550

RESUMO

Ractopamine (RAC) is a synthetic phenethanolamine, ß-adrenergic agonist used as a feed additive to develop leanness and increase feed conversion efficiency in different farm animals. While RAC has been authorized as a feed additive for pigs and cattle in a limited number of countries, a great majority of jurisdictions, including the European Union (EU), China, Russia, and Taiwan, have banned its use on safety grounds. RAC has been under long scientific and political discussion as a controversial antibiotic as a feed additive. Here, we will present significant information on RAC regarding its application, detection methods, conflicts, and legal divisions that play a major role in controversial deadlock and why this issue warrants the attention of scientists, agriculturists, environmentalists, and health advocates. In this review, we highlight the potential toxicities of RAC on aquatic animals to emphasize scientific evidence and reports on the potentially harmful effects of RAC on the aquatic environment and human health.


Assuntos
Ração Animal , Dissidências e Disputas , Humanos , Suínos , Bovinos , Animais , Ração Animal/análise , Fenetilaminas/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Antibacterianos
6.
Cells ; 10(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572098

RESUMO

Ractopamine (RAC) is a beta-adrenoceptor agonist that is used to promote lean and increased food conversion efficiency in livestock. This compound has been considered to be causing behavioral and physiological alterations in livestock like pig. Few studies have addressed the potential non-target effect of RAC in aquatic animals. In this study, we aimed to explore the potential physiological response after acute RAC exposure in zebrafish by evaluating multiple endpoints like locomotor activity, oxygen consumption, and cardiovascular performance. Zebrafish larvae were subjected to waterborne RAC exposure at 0.1, 1, 2, 4, or 8 ppm for 24 h, and the corresponding cardiovascular, respiratory, and locomotion activities were monitored and quantified. In addition, we also performed in silico molecular docking for RAC with 10 zebrafish endogenous ß-adrenergic receptors to elucidate the potential acting mechanism of RAC. Results show RAC administration can significantly boost locomotor activity, cardiac performance, oxygen consumption, and blood flow rate, but without affecting the cardiac rhythm regularity in zebrafish embryos. Based on structure-based flexible molecular docking, RAC display similar binding affinity to all ten subtypes of endogenous ß-adrenergic receptors, from adra1aa to adra2db, which are equivalent to the human one. This result suggests RAC might act as high potency and broad spectrum ß-adrenergic receptors agonist on boosting the locomotor activity, cardiac performance, and oxygen consumption in zebrafish. To validate our results, we co-incubated a well-known ß-blocker of propranolol (PROP) with RAC. PROP exposure tends to minimize the locomotor hyperactivity, high oxygen consumption, and cardiac rate in zebrafish larvae. In silico structure-based molecular simulation and binding affinity tests show PROP has an overall lower binding affinity than RAC. Taken together, our studies provide solid in vivo evidence to support that RAC plays crucial roles on modulating cardiovascular, respiratory, and locomotory physiology in zebrafish for the first time. In addition, the versatile functions of RAC as ß-agonist possibly mediated via receptor competition with PROP as ß-antagonist.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Sistema Cardiovascular/fisiopatologia , Larva/fisiologia , Locomoção , Fenetilaminas/farmacologia , Sistema Respiratório/fisiopatologia , Animais , Sistema Cardiovascular/efeitos dos fármacos , Larva/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Peixe-Zebra
7.
Pathogens ; 9(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957549

RESUMO

Streptomyces scabies is a Gram-positive bacterial pathogen that causes common scab disease to several crops, particularly in the potato. It is a soil borne pathogen, a very devastating scab pathogen and difficult to manage in the field. Streptomyces has several species that cause common scab such as S. scabiei, S. acidiscabies, S. europaeiscabiei, S. luridiscabiei, S. niveiscabiei, S. puniciscabiei, S. reticuliscabiei, S. stelliscabiei, S. turgidiscabies, S. ipomoeae. Common scab disease harmfully affects potato economic and market value due to the presence of black spots on the tuber. Owing to its genetic diversity and pathogenicity, the determination of pathogen presence in potato fields is still challenging. In this study, S. scabies genetic diversity was measured by surveying five potato-growing areas of Pakistan during the growing season 2019. A total of 50 Streptomyces isolates, including S. scabies, S. acidiscabies, S. griseoflavus were isolated and identified based on morphologic, biochemical and molecular analysis. Virulent confirmation assays confirmed ten virulent strains of Streptomyces spp. On the potato cultivars Cardinal and Santee. Among the Streptomyces species, S. scabies showed the highest scab index, followed by S. acidiscabies and S. griseoflavus by exhibiting the scab-like lesions on potato tubers. Ten potato cultivars were screened against these virulent isolates of Streptomyces. The Faisalabad white variety showed the highest scab index followed By Cardinal, Tourag, Kuroda, Santee, Lady Rosetta, Asterix, Diamant, Faisalabad red and Sadaf. Moreover, genetic diversity and pathogenicity of Streptomyces spp. on potato tubers were also likely diverse in different geographical regions and also potato cultivars. This study represents a contribution to understanding the local interaction between potatoes and Streptomyces spp. in Pakistan. It will aid in supporting a solution for the management of this pathogen around the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA