Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; : e2400217, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864845

RESUMO

A series of tetrahydrobenzo[b]thiophene derivatives was designed and synthesized as dual topoisomerase (Topo) I/II inhibitors implicating potential DNA intercalation. Ethyl-2-amino-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-4-carboxylate (1) was prepared by modification of the Gewald reaction procedure using a Fe2O3 nanocatalyst and then it was used as a building block for the synthesis of tetrahydrobenzo[b]thiophene candidates (2-14). Interestingly, compound 14 showed the best cytotoxic potential against hepatocellular, colorectal, and breast cancer cell lines (IC50 = 7.79, 8.10, and 3.53 µM), respectively, surpassing doxorubicin at breast cancer (IC50 = 4.17 µM). Meanwhile, the Topo I and II inhibition assay displayed that compound 3 could exhibit the best inhibitory potential among the investigated candidates (IC50 = 25.26 and 10.01 nM), respectively, in comparison to camptothecin (IC50 = 28.34 nM) and doxorubicin (IC50 = 11.01 nM), as reference standards. In addition, the DNA intercalation assay showed that compound 14 could display the best binding affinity with an IC50 value of 77.82 µM in comparison to doxorubicin (IC50 = 58.03 µM). Furthermore, cell cycle and apoptosis analyses described that compound 3 prompts the G1 phase arrest in michigan cancer foundation-7 cancer cells and increases the apoptosis ratio by 29.31% with respect to untreated cells (2.25%). Additionally, the conducted molecular docking assured the promising binding of the investigated members toward Topo I and II with potential DNA intercalation. Accordingly, the synthesized compounds could be treated as promising anticancer candidates for future optimization.

2.
Sci Rep ; 14(1): 1516, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233515

RESUMO

The exponential development of resistance to conventional chemical insecticides adds another important motive for the creation of novel insecticidal active agents. One of the keys to meeting this challenge is the exploration of novel classes of insecticidal molecules with different modes of action. Herein, a novel series of spiro pyrimidine derivatives was prepared using some green synthetic methodologies such as microwave irradiation, and sonication under ultrasound waves. Spiro pyrimidine aminonitrile 1 is a key starting material for the synthesis of targets 2-9 by reaction with different carbon electrophiles and nitrogen nucleophiles. The structures of all the newly synthesized compounds were approved using spectral data. The toxicological efficiency and biological impacts of the synthesized spiro pyrimidine derivatives were assessed against Culex pipiens L. larvae. The toxicity of synthesized compounds showed remarkable variations against the C. pipiens larvae. Where, 3, 4 and 2 were the most efficient compounds with LC50 values of 12.43, 16.29 and 21.73 µg/mL, respectively. While 1 was the least potent compound with an LC50 value of 95.18 µg/mL. As well, other compounds were arranged according to LC50 values as follows 5 > 7 > 6 > 9 > 8. In addition, 3 and 4 exhibited significant prolongation of the developmental duration and greatly inhibited adult emergence. Moreover, many morphological deformities were observed in all developmental stages. Furthermore, cytotoxicity of the most effective compounds was assessed against the normal human cells (WI-38) as non-target organisms, where compounds 2, 4 and 3 showed weak to non-toxic effects. The study of binding affinity and correlation between chemical structure and reactivity was carried out using molecular docking study and DFT calculations to investigate their mode of action. This study shed light on promising compounds with larvicidal activity and biological impacts on the C. pipiens life cycle.


Assuntos
Culex , Inseticidas , Animais , Humanos , Simulação de Acoplamento Molecular , Inseticidas/farmacologia , Inseticidas/química , Larva , Pirimidinas/toxicidade
3.
Chem Biodivers ; 21(2): e202301682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38084395

RESUMO

Herein, an efficient method for the synthesis of a new series of pyrido[2,3-d]pyrimidine derivatives has been adopted through the reaction of hydrazinyl pyrido[2,3-d] pyrimidine derivative (1) with different electrophilic species, such as ethyl cyanoacetate and different 1,3 diketone derivatives, gave the corresponding derivatives (2-5). Meanwhile, pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidines (6-11) were synthesized via reaction of hydrazine derivative 1 with phenylisothiocyanate, potassium thiocyanate, and carbon disulfide. Compound 1 was also submitted to react with different carbonyl compounds to afford pyrido-pyrimidine derivatives (12-15). All the newly synthesized compounds were tested in vitro for their antiproliferative activities against HCT-116 and MCF-7 cell lines. Compounds 2, 3, 7, and 8 displayed very strong inhibitory activity against the two cell lines compared with the standard drug doxorubicin. Furthermore, a docking study of the most active compounds was performed with the thymidylate synthase enzyme (PDB: Code 6qxg). Moreover, DFT calculation was carried out for the most biologically active compounds and a reference drug (Doxorubicin) using the B3LYP/6-31G+(d,p) level of theory. The calculated EHOMO and ELUMO energies were used to calculate the global reactivity parameters. Finally, Molecular electrostatic potential (MEP) and structure activity relationship (SAR) were studied to correlate the relation between chemical structure and reactivity.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/química , Teoria da Densidade Funcional , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Células MCF-7 , Doxorrubicina/farmacologia , Pirimidinas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Desenho de Fármacos
4.
Bioorg Chem ; 142: 106936, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890211

RESUMO

A novel series of ethylidenehydrazineylthiazol-4(5H)-ones were synthesized using various eco-friendly one-pot multicomponent synthetic techniques. The anticancer activity of compounds (4a-m) was tested against 11 cancer cell lines. While the IC50 of all compounds was evaluated against the most sensitive cell lines (MDA-MB-468 and FaDu). Our SAR study pinpointed that compound 4a, having a phenyl substituent, exhibited a significant growth inhibition % against all cancer cell lines. The frontier anticancer candidates against the MDA-MB-468 were also examined against the wild EGFR (EGFR-WT) and mutant EGFR (EGFR-T790M) receptors. Most of the synthesized compounds exhibited a higher inhibitory potential against EGFR-T790M than the wild type of EGFR. Remarkably, compound 4k exhibited the highest inhibitory activity against both EGFR-WT and EGFR-T790M with IC50 values (0.051 and 0.021 µM), respectively. The pro-apoptotic protein markers (p53, BAX, caspase 3, caspase 6, caspase 8, and caspase 9) and the anti-apoptotic key marker (BCL-2) were also measured to propose a mechanism of action for the compound 4k as an apoptotic inducer for MDA-MB-468. Investigation of the cell cycle arrest potential of compound 4k was also conducted on MDA-MB-468 cancer cells. We also evaluated the inhibitory activities of compounds (4a-m) against both EGFR-WT and EGFR-T790M using two different molecular docking processes.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Humanos , Estrutura Molecular , Receptores ErbB , Relação Estrutura-Atividade , Proliferação de Células , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Mutação , Linhagem Celular Tumoral , Apoptose
5.
RSC Adv ; 13(18): 12184-12203, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37082377

RESUMO

In this article, we continued our previous effort to develop new selective anticancer candidates based on the basic pharmacophoric requirements of both EGFR and VEGFR-2 inhibitors. Therefore, twenty-two novel 4-thiophenyl-pyrazole, pyridine, and pyrimidine derivatives were designed and examined as dual EGFR/VEGFR-2 inhibitors. Besides, the previously reported antimicrobial activities of the aforementioned nuclei motivated us to screen their antibacterial and antifungal activities as well. First, the antitumor activities of the newly synthesized derivatives were evaluated against two cancer cell lines (HepG-2 and MCF-7). Notably, compounds 2a, 6a, 7a, 10b, 15a, and 18a exhibited superior anticancer activities against both HepG-2 and MCF-7 cancer cell lines. These candidates were selected to further evaluate their anti-EGFR and anti-VEGFR-2 potentialities which were found to be very promising compared to erlotinib and sorafenib, respectively. Both 10b and 2a derivatives achieved better dual EGFR/VEGFR-2 inhibition with IC50 values of 0.161 and 0.141 µM and 0.209 and 0.195 µM, respectively. Moreover, the most active 10b was selected to evaluate the exact phase of cell cycle arrest and to investigate the exact mechanism of cancer cell death whether it be due to apoptosis or necrosis. On the other hand, all the synthesized compounds were tested against Gram-positive bacteria such as S. aureus and B. subtilis as well as Gram-negative bacteria such as E. coli and P. aeuroginosa. Also, the antifungal activity was investigated against C. albicans and A. flavus strains. The findings of the antimicrobial tests revealed that most of the investigated compounds exhibited strong to moderate antibacterial and antifungal effects. Furthermore, to understand the pattern by which the investigated compounds bound to the active site, all the newly synthesized candidates were subjected to two different docking processes into the EGFR and VEGFR-2 binding sites. Besides, we tried to correlate compound 10b and the reference drugs (erlotinib and sorafenib) through DFT calculations. Finally, following the biological data of the new pyrazole, pyridine, and pyrimidine derivatives as anticancer and antimicrobial candidates, we concluded a very interesting SAR for further optimization.

6.
Bioorg Chem ; 104: 104255, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927130

RESUMO

As an extension for our earlier effort in the field of discovery of anticancer agents acting on DNA and Topo II, eighteen quinoxaline derivatives were designed and synthesized. Such members were designed to possess the main essential pharmacophoric features of DNA intercalators. The cytotoxic potential of the synthesized compounds was assessed against a group of human cancer cell lines (HCT-116, HepG2, and MCF-7). Doxorubicin as potential intercalative Topo II inhibitor, was used as a positive reference. In general, compounds 12, 15, 19, 21, and 22 showed promising anti-proliferative activities against the three cell lines with IC50 values ranging from 2.81 to 10.23 µM. The cytotoxicities of the most active compounds against normal human cells (WI-38) were evaluated, and the results revealed that these compounds have low toxicity. Further examination for the most active anti-proliferative members as Topo II inhibitors was also performed, showing a narrow range of the inhibitory activities (from 0.45 to 1.06 µM). In addition, DNA/methyl green assay was carried out to evaluate DNA-binding potential of such compounds. The results indicated that these compounds have strong to moderate DNA-binding affinities ranging from 33.48 to 51.23 µM. Further studies exhibited the capability of compound 22 to induce apoptosis in HepG2 cells and can arrest growth of such cells at G2/M phase. Also, compound 22 produced a significant increase in the level of caspase- 3 (10 folds) and caspase-9 (7 folds) compared to the control cells. Molecular docking studies were also conducted to investigate possible binding interactions between the target compounds and the DNA-Topo II complex.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Simulação de Acoplamento Molecular , Quinoxalinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA