Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 38(9): 957-974, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453252

RESUMO

Skin tissue engineering has gained significant attention as a promising alternative to traditional treatments for skin injuries. In this study, we developed 3D hydrogel-based scaffolds, Alginate, incorporating different concentrations of Curcumin and evaluated their properties, including morphology, swelling behavior, weight loss, as well as hemo- and cytocompatibility. Furthermore, we investigated the therapeutic potential of Alginate hydrogel containing different amounts of Curcumin using an in vitro wound healing model. The prepared hydrogels exhibited remarkable characteristics, SEM showed that the pore size of hydrogels was 134.64 µm with interconnected pores, making it conducive for cellular infiltration and nutrient exchange. Moreover, hydrogels demonstrated excellent biodegradability, losing 63.5% of its weight over 14 days. In addition, the prepared hydrogels had a stable release of curcumin for 3 days. The results also show the hemocompatibility of prepared hydrogels and a low amount of blood clotting. To assess the efficacy of the developed hydrogels, 3T3 fibroblast growth was examined during various incubation times. The results indicated that the inclusion of Curcumin at a concentration of 0.1 mg/mL positively influenced cellular behavior. The animal study showed that Alginate hydrogel containing 0.1 mg/mL curcumin had high wound closure(more than 80%) after 14 days. In addition, it showed up-regulation of essential wound healing genes, including TGFß1 and VEGF, promoting tissue repair and angiogenesis. Furthermore, the treated group exhibited down-regulation of MMP9 gene expression, indicating a reduction in matrix degradation and inflammation. The observed cellular responses and gene expression changes substantiate the therapeutic efficacy of prepared hydrogels. Consequently, our study showed the healing effect of alginate-based hydrogel containing Curcumin on skin injuries.


Assuntos
Curcumina , Hidrogéis , Animais , Hidrogéis/farmacologia , Curcumina/farmacologia , Alginatos/farmacologia , Cicatrização , Perfilação da Expressão Gênica
2.
Pathol Res Pract ; 221: 153443, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33930607

RESUMO

Since the outbreak of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the control of virus spread has remained challenging given the pitfalls of the current diagnostic tests. Nevertheless, RNA amplification techniques have been the gold standard among other diagnostic methods for monitoring clinical samples for the presence of the virus. In the current paper, we review the shortcomings and strengths of RT-PCR (real-time polymerase chain reaction) techniques for diagnosis of coronavirus disease (COVID)-19. We address the repercussions of false-negative and false-positive rates encountered in the test, summarize approaches to improve the overall sensitivity of this method. We discuss the barriers to the widespread use of the RT-PCR test, and some technical advances, such as RT-LAMP (reverse-transcriptase-loop mediated isothermal amplification). We also address how other molecular techniques, such as immunodiagnostic tests can be used to avoid incorrect interpretation of RT-PCR tests.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/isolamento & purificação , Humanos
3.
Drug Dev Ind Pharm ; 47(12): 1915-1923, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35484948

RESUMO

Solid supports like the extracellular matrix network are necessary for bone cell attachment and start healing in the damaged bone. Scaffolds which are made of different materials are widely used as a supportive structure in bone tissue engineering. In the current study, a 3D polycaprolactone/gelatin bone scaffold was developed by blending electrospinning and freeze-drying techniques for bone tissue engineering. To improve the efficiency of the scaffold, different concentrations of epinephrine (EP) due to its effect on bone healing were loaded. Fabricated scaffolds were characterized by different tests such as surface morphology, FTIR, porosity, compressive strength, water contact angle, and degradation rate. The interaction between prepared scaffolds and blood and cells was evaluated by hemolysis, and MTT test, respectively, and bone healing was evaluated by a rat calvaria defect model. Based on the results, the porosity of scaffolds was about 75% and by adding EP, mechanical strength decreased while due to the hydrophilic properties of it, degradation rate increased. In vivo and in vitro studies showed the best cell proliferation and bone healing were in PCL/gelatin/EP1% treated group. These results showed the positive effect of fabricated scaffold on osteogenesis and bone healing and the possibility of using it in clinical trials.


Assuntos
Gelatina , Alicerces Teciduais , Animais , Regeneração Óssea , Proliferação de Células , Epinefrina , Gelatina/química , Poliésteres/química , Porosidade , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
4.
Drug Deliv Transl Res ; 11(5): 1983-1993, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33034886

RESUMO

Peripheral nerve injuries are the common results of trauma that lead to pain and handicap in patients. Berberine due to its properties like antibiotic, immunostimulant, antitumor, antimotility, and positive effect on neurological disorders can be used to enhance peripheral nerve injuries. In this study, alginate/chitosan hydrogel containing different concentrations of berberine (0, 0.1, 1, 10% (w/v)) was created, evaluated, and applied as a scaffold for sciatic nerve regeneration. To prepare hydrogel, sodium alginate was dissolved in distilled water and cross-linked with CaCl2, and chitosan was dissolved in acetic acid and cross-linked with ß-glycerol phosphate. The structure, release, swelling, weight loss, cytocompatibility, and hemocompatibility of the prepared hydrogels were assessed. The sciatic nerve crush was created in rats and fabricated hydrogels were injected, and functional analysis was used to evaluate their effectiveness. The results of physical characterization of the hydrogel indicated that the initial average pore size was about 39 µm and about 70% of the main weight of hydrogels was lost after incubation for 21 days and hemocompatibility of hydrogels was also confirmed. The MTT assay showed the cytocompatiblity of hydrogels and also indicated that berberine has dose-dependence effect on cell proliferation. The in vivo results showed the positive effect of berberine especially the hydrogel contained 1% of berberine on regeneration of sciatic nerve. Based on this study, Alg/Chit hydrogel can be applied as a treatment to heal peripheral nerve injuries. Graphical abstract.


Assuntos
Berberina , Quitosana , Alginatos/química , Animais , Quitosana/química , Humanos , Hidrogéis/química , Regeneração Nervosa/fisiologia , Ratos , Nervo Isquiático
5.
Int J Biol Macromol ; 164: 3323-3331, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888985

RESUMO

Functional and bioactive wound dressing materials are revolutionary for wound care and healing applications. In this concept, we fabricated alginate hydrogel (Alg) containing H2S as the wound dressing materials and assessed the morphology, swelling, degradation, and release behavior, as well as the biocompatibility, cytocompatibility, and wound healing activity. The results depicted that the prepared hydrogels have a porous structure with the pore size in the range of 50 to 100 µm. Swelling and degradation studies showed that the hydrogel absorbed water about 179 ± 5% of initial dry weight during 96 h and loos about 80% of the initial dry weight after 7 days. The in vitro assessments illustrated that the optimum concentration of H2S was 0.5% and the higher concentration induced hemolysis and cell toxicity. The in vivo study revealed that the treatment by Alg/H2S 0.5% induced the highest wound closure percent with a value of 98 ± 1.22%. Moreover, the treatment by Alg/H2S 0.5% elicited the formation of sebaceous glands, hair follicles, and complete epithelization without any fibroplasia or inflammation, revealed by the histopathological observations. Accordingly, these results illustrated that the prepared Alg/H2S 0.5% could be applied as the functional and bioactive wound dressing materials.


Assuntos
Alginatos/farmacologia , Sulfeto de Hidrogênio/farmacologia , Cicatrização/efeitos dos fármacos , Alginatos/química , Animais , Curativos Hidrocoloides/tendências , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Hidrogéis/química , Masculino , Camundongos , Ratos , Ratos Wistar
6.
Biomed Eng Lett ; 10(1): 149-161, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32175135

RESUMO

In this study, cinnamon (cin) was loaded into poly(ε-caprolactone)/gelatin (PCL/Gel) nanofibrous matrices in order to fabricate an appropriate mat to improve wound healing. Mats were fabricated from PCL/COLL [1:1 (w/w)] solution with 1, 5 and 25% (w/v) of cinnamon. Prepared mats were characterized with regard to their microstructure, mechanical properties, porosity, surface wettability, water-uptake capacity, water vapor permeability, blood compatibility, microbial penetration and cellular response. The fabricated mats with and without cinnamon were used to treat the full-thickness excisional wounds in Wistar rats. The results indicated that the amount of cinnamon had a direct effect on porosity, mechanical properties, water uptake capacity, water contact angle, water vapor transmission rate and cell proliferation. In addition, the results of in vivo study indicated that after 14 days, the wounds which were treated with PCL/Gel 5%cin had better wound closure (98%) among other groups. Our results suggest that the cinnamon can be used as a suitable material for wound healing.

7.
Clin Exp Reprod Med ; 47(1): 54-60, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32079054

RESUMO

OBJECTIVE: Oxidative stress plays a key role in the pathogenesis of male infertility. But, the adverse effects of oxidative biomarkers on sperm quality remain unclear. This study aimed to investigate the levels of nitric oxide (NO), 8-hydroxydesoxyguanosine (8-OHdG), and total antioxidant capacity (TAC) oxidative biomarkers in seminal plasma and their relationship with sperm parameters. METHODS: A total of 77 volunteers participated in the study, including fertile (n=40) and infertile men (n=37). NO, 8-OHdG, and TAC levels were measured using the ferric reducing ability of plasma, Griess reagent method and an enzyme-linked immunosorbent assay kit, respectively. RESULTS: The mean values of sperm parameters in the infertile group were significantly lower than those in the fertile group (p<0.001). The mean 8-OHdG in the seminal plasma of infertile men was significantly higher (p=0.013) than those of controls, while the mean TAC was significantly lower (p=0.046). There was no significant difference in NO level between the two groups. The elevated seminal 8-OHdG levels were negatively correlated with semen volume, total sperm counts and morphology (p<0.001, p=0.001 and p=0.052, respectively). NO levels were negatively correlated with semen volume, total sperm counts and morphology (p=0.014, p=0.020 and p=0.060, respectively). Positive correlations between TAC and both sperm count and morphology (p=0.043 and p=0.025, respectively) were also found. CONCLUSION: These results suggested that increased levels of NO and 8-OHdG in seminal plasma could have a negative effect on sperm function by inducing damage to the sperm DNA hence their fertility potentials. Therefore, these biomarkers can be useful in the diagnosis and treatment of male infertility.

8.
J Cell Physiol ; 234(5): 5628-5642, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30478951

RESUMO

Targeted delivery of therapeutic molecules into cancer cells is considered as a promising strategy to tackle cancer. Antibody-drug conjugates (ADCs), in which a monoclonal antibody (mAb) is conjugated to biologically active drugs through chemical linkers, have emerged as a promising class of anticancer treatment agents, being one of the fastest growing fields in cancer therapy. The failure of early ADCs led researchers to explore strategies to develop more effective and improved ADCs with lower levels of unconjugated mAbs and more-stable linkers between the drug and the antibody, which show improved pharmacokinetic properties, therapeutic indexes, and safety profiles. Such improvements resulted in the US Food and Drug Administration approvals of brentuximab vedotin, trastuzumab emtansine, and, more recently, inotuzumab ozogamicin. In addition, recent clinical outcomes have sparked additional interest, which leads to the dramatically increased number of ADCs in clinical development. The present review explores ADCs, their main characteristics, and new research developments, as well as discusses strategies for the selection of the most appropriate target antigens, mAbs, cytotoxic drugs, linkers, and conjugation chemistries.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/farmacocinética , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Segurança do Paciente , Medição de Risco
9.
J Cell Physiol ; 234(3): 2693-2704, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30246298

RESUMO

Targeted therapy using specific monoclonal antibodies (mAbs) conjugated to chemotherapeutic agents or toxins has become one of the top priorities in cancer therapy. Antibody-drug conjugates (ADCs) are emerging as a promising strategy for cancer-targeted therapy. In this study, trastuzumab, a humanized monoclonal anti-HER2 antibody, was reduced by dithiothreitol and conjugated to the microtubule-disrupting agent monomethyl auristatin E (MMAE) through a valine-citrulline peptide linker (trastuzumab-MC-Val-Cit-PABC-MMAE [trastuzumab-vcMMAE]). After conjugation, ADCs were characterized by using UV-vis, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and flow cytometry. The antitumor activity of the ADC was evaluated in breast cancer cells in vitro. In addition, ADCs were further characterized using purification by the protein A chromatography, followed by assessment using apoptosis and MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assays. Hydrophobic interaction chromatography was used to determine drug-to-antibody ratio species of ADCs produced. Our finding showed that approximately 5.12 drug molecules were conjugated to each mAb. H2L2, H2L, HL, H2, H, and L forms of ADCs were detected in nonreducing SDS-PAGE. The binding of trastuzumab-vcMMAE to HER2-positive cells was comparable with that of the parental mAb. The MTT assay showed that our ADCs induced significant cell death in HER2-positive cells, but not in HER2-negative cells. The ADCs produced was a mixture of species, unconjugated trastuzumab (14.147%), as well as trastuzumab conjugated with two (44.868%), four (16.886%), six (13.238%), and eight (10.861%) molecules of MMAE. These results indicated that MMAE-conjugated trastuzumab significantly increases the cytotoxic activity of trastuzumab, demonstrating high affinity, specificity, and antitumor activity in vitro. Trastuzumab-vcMMAE is an effective and selective agent for the treatment of HER2-positive breast tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA