Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(42): 15716-15724, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37820298

RESUMO

Synthetic biology relies on engineering cells to have desirable properties, such as the production of select chemicals. A bottleneck in engineering methods is often the need to screen and sort variant libraries for potential activity. Droplet microfluidics is a method for high-throughput sample preparation and analysis which has the potential to improve the engineering of cells, but a limitation has been the reliance on fluorescent analysis. Here, we show the ability to select cell variants grown in 20 nL droplets at 0.5 samples/s using mass-activated droplet sorting (MADS), a method for selecting droplets based on the signal intensity measured by electrospray ionization mass spectrometry (ESI-MS). Escherichia coli variants producing lysine were used to evaluate the applicability of MADS for synthetic biology. E. coli were shown to be effectively grown in droplets, and the lysine produced by these cells was detectable using ESI-MS. Sorting of lysine-producing cells based on the MS signal was shown, yielding 96-98% purity for high-producing variants in the selected pool. Using this technique, cells were recovered after screening, enabling downstream validation via phenotyping. The presented method is translatable to whole-cell engineering for biocatalyst production.


Assuntos
Escherichia coli , Lisina , Engenharia Celular , Movimento Celular , Corantes
2.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37656881

RESUMO

Biomanufacturing could contribute as much as ${\$}$30 trillion to the global economy by 2030. However, the success of the growing bioeconomy depends on our ability to manufacture high-performing strains in a time- and cost-effective manner. The Design-Build-Test-Learn (DBTL) framework has proven to be an effective strain engineering approach. Significant improvements have been made in genome engineering, genotyping, and phenotyping throughput over the last couple of decades that have greatly accelerated the DBTL cycles. However, to achieve a radical reduction in strain development time and cost, we need to look at the strain engineering process through a lens of optimizing the whole cycle, as opposed to simply increasing throughput at each stage. We propose an approach that integrates all 4 stages of the DBTL cycle and takes advantage of the advances in computational design, high-throughput genome engineering, and phenotyping methods, as well as machine learning tools for making predictions about strain scale-up performance. In this perspective, we discuss the challenges of industrial strain engineering, outline the best approaches to overcoming these challenges, and showcase examples of successful strain engineering projects for production of heterologous proteins, amino acids, and small molecules, as well as improving tolerance, fitness, and de-risking the scale-up of industrial strains.

3.
ACS Cent Sci ; 5(6): 1067-1078, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31263766

RESUMO

Plant polysaccharides represent a virtually unlimited feedstock for the generation of biofuels and other commodities. However, the extraordinary recalcitrance of plant polysaccharides toward breakdown necessitates a continued search for enzymes that degrade these materials efficiently under defined conditions. Activity-based protein profiling provides a route for the functional discovery of such enzymes in complex mixtures and under industrially relevant conditions. Here, we show the detection and identification of ß-xylosidases and endo-ß-1,4-xylanases in the secretomes of Aspergillus niger, by the use of chemical probes inspired by the ß-glucosidase inhibitor cyclophellitol. Furthermore, we demonstrate the use of these activity-based probes (ABPs) to assess enzyme-substrate specificities, thermal stabilities, and other biotechnologically relevant parameters. Our experiments highlight the utility of ABPs as promising tools for the discovery of relevant enzymes useful for biomass breakdown.

4.
Appl Environ Microbiol ; 77(19): 7007-15, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821740

RESUMO

Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/metabolismo , Desidrogenases de Carboidrato/metabolismo , Celulose/metabolismo , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/metabolismo , Oxirredução , Especificidade por Substrato
5.
Mol Cell ; 24(6): 877-89, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17189190

RESUMO

Many DNA viruses that are latent in dividing cells are noncovalent passengers on mitotic chromosomes and require specific viral-encoded and cellular factors for this activity. The chromosomal protein Brd4 is implicated in the hitchhiking of bovine papillomavirus-1 (BPV-1), and the viral protein E2 binds to both plasmids and Brd4. Here, we present the X-ray crystal structure of the carboxy-terminal domain of Brd4 in complex with HPV-16 E2, and with this information have developed a Brd4-Tat fusion protein that is efficiently taken up by different transformed cells harboring HPV plasmids. In cells treated with these fusion proteins for only 2 hr and arrested in metaphase, the HPV DNA, either HPV-16 or -31, is displaced from mitotic chromosomes. Mutant Brd4 peptides are deficient in ablating this association. We suggest that such peptides may lead to the development of inhibitors of latency for many, if not all, papillomaviruses.


Assuntos
Cromossomos/metabolismo , DNA Viral/química , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 16/genética , Proteínas de Fusão Oncogênica/química , Proteínas Virais/química , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular , Cristalografia por Raios X , DNA Viral/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Genoma Viral , Proteínas de Fluorescência Verde/genética , Papillomavirus Humano 16/química , Humanos , Camundongos , Mitose , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares , Proteínas de Fusão Oncogênica/metabolismo , Peptídeos , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Fatores de Transcrição , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Genes Dev ; 18(16): 1981-96, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15289463

RESUMO

DNA replication of the papillomaviruses is specified by cooperative binding of two proteins to the ori site: the enhancer E2 and the viral initiator E1, a distant member of the AAA+ family of proteins. Formation of this prereplication complex is an essential step toward the construction of a functional, multimeric E1 helicase and DNA melting. To understand how E2 interacts with E1 to regulate this process, we have solved the X-ray structure of a complex containing the HPV18 E2 activation domain bound to the helicase domain of E1. Modeling the monomers of E1 to a hexameric helicase shows that E2 blocks hexamerization of E1 by shielding a region of the E1 oligomerization surface and stabilizing a conformation of E1 that is incompatible with ATP binding. Further biochemical experiments and structural analysis show that ATP is an allosteric effector of the dissociation of E2 from E1. Our data provide the first molecular insights into how a protein can regulate the assembly of an oligomeric AAA+ complex and explain at a structural level why E2, after playing a matchmaker role by guiding E1 to the DNA, must dissociate for subsequent steps of initiation to occur. Building on previously proposed ideas, we discuss how our data advance current models for the conversion of E1 in the prereplication complex to a hexameric helicase assembly.


Assuntos
DNA Helicases/química , Papillomaviridae/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA