RESUMO
Exploring genomic regions linked with drought tolerance and photosynthesis in cowpea could accelerate breeding of climate-resilient cowpea varieties A Genome-wide association study (GWAS) was conducted to identify marker-trait associations for agronomic and photosynthetic traits measured under well-watered and water-stressed conditions. One hundred and twelve cowpea accessions from IITA were phenotyped for agronomic and photosynthetic traits across three locations in two years: Ibadan, Ikenne (2020 and 2021) and Kano (2021 and 2022). The accessions were genotyped using 19,000 DArT-Seq SNP markers from which 9,210 markers were utilized for GWAS analysis using BLINK and mixed linear model (MLM) in GAPIT. Results revealed significant accession × environment interactions for measured traits while ΦPSII, ΦNO and ΦNPQ had significant and consistent correlations with grain yield across conditions. GWAS identified five SNP markers having consistent associations with grain yield under well-watered and water-stressed conditions and three markers associated with ΦNPQ and ΦNO. Gene annotations revealed Vigun04g169000 and Vigun08g168900 genes linked with grain yield and highly expressed under water-stressed conditions have functional roles in regulating plant development and adaptive response to environmental stress. Vigun07g133400, Vigun07g132700 and Vigun07g258000 genes linked with ΦNPQ and ΦNO are involved in activities controlling photoprotection and stress-induced damage in plants. This study identified natural genetic variation in cowpea and correlations between photosynthetic traits and grain yield under real-field drought conditions. The identified SNP markers upon validation would be valuable in marker-assisted selection and useful for cowpea breeders to harness the role of photosynthesis in genetic enhancement of cowpea tolerance to drought.
RESUMO
Diseases caused by Colletotrichum fungi result in major agricultural losses worldwide. Here, we present two draft genomes of Colletotrichum spp. responsible for foliar and pod blight on African yam bean. Colletotrichum siamense and Colletotrichum truncatum assemblies totalled 55.8 Mb in 563 contigs and 54.8 Mb in 1,240 contigs, respectively.
RESUMO
Cowpea is a highly drought-adapted leguminous crop with great promise for improving agricultural sustainability and food security. Here, we report analyses derived from array-based genotyping of 2,021 accessions constituting a core subset of the world's largest cowpea collection, held at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria. We used this dataset to examine genetic variation and population structure in worldwide cowpea. We confirm that the primary pattern of population structure is two geographically defined subpopulations originating in West and East Africa, respectively, and that population structure is associated with shifts in phenotypic distribution. Furthermore, we establish the cowpea core collection as a resource for genome-wide association studies by mapping the genetic basis of several phenotypes, with a focus on seed coat pigmentation patterning and color. We anticipate that the genotyped IITA Cowpea Core Collection will serve as a powerful tool for mapping complex traits, facilitating the acceleration of breeding programs to enhance the resilience of this crop in the face of rapid global climate change.
Assuntos
Variação Genética , Genótipo , Fenótipo , Vigna , Vigna/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Genoma de Planta , Locos de Características Quantitativas , Genética PopulacionalRESUMO
African yam bean (AYB) (Sphenostylis stenocarpa (Hochst ex. A. Rich.) harms) an underutilized legume that produces nutritionally healthy seeds and tubers in some variety. The low yield of the crop is attributed to production constraints such as attacks by pest and disease-causing organisms such as fungi, bacteria and viruses. In this study, one hundred AYB accessions were evaluated for resistance to viral infection. The AYB accessions were planted using a randomized complete block design on the experimental field at the International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria. Viral disease severity was assessed at 10, 12, 14, 16 and 18 weeks after planting (WAP) based on disease symptoms using disease severity index on visual scale of 1-5. Antigen-coated plate enzyme linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction were used to index diseased leaf samples collected from the field. Result from five virus species (Cowpea mild mottle virus, Cowpea mottle virus, Southern bean mosaic virus, Cowpea mosaic virus and Bean common mosaic virus) were detected in few accessions while mixed infections were observed in some accessions. TSs-552, TSs-577, TSs-580, TSs-560 and TSs-600 were devoid of viruses and could be resistant. There were no significant differences at p < 0.05 in the mean disease incidence (DI) of viral diseases. However, at 18 weeks after planting, TSs-604 had the highest (100%) mean DI while TSs-584 had the lowest (13.33%) mean DI. Cluster analysis based on the AUDPC produced 6 main clusters, the clusters revealed grouping patterns in which AYB lines with similar resistance ratings were shown to form unique clusters. The information generated from this study will contribute to the development of strategies in the management of virus diseases infecting AYB.
Assuntos
Resistência à Doença , Doenças das Plantas , Doenças das Plantas/virologia , Resistência à Doença/genética , Comovirus/genética , Nigéria , Potyvirus/genética , Potyvirus/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Folhas de Planta/virologia , Fabaceae/virologiaRESUMO
Nitrogen fixation by bacteria is essential for sustaining the growth, development, and yield of legumes. Pot experiments were carried out at the International Institute of Tropical Agriculture (IITA) in the glasshouse between August to December 2018/2019 cropping season in Ibadan, Nigeria. Field studies were also performed in two different agroecological zones, "Ibadan and Ikenne" between August and December of 2019/2020 cropping season. The studies were set up to determine the potential of nitrogen-fixation bacteria strain inoculation on the nitrogen-fixation potential of 10 Bambara groundnut (BGN) genotypes, namely, TVSu-378, TVSu-506, TVSu-787, TVSu-1,606, TVSu-1,698, TVSu-1739, TVSu-710, TVSu-365, TVSu-475, and TVSu-305. The strains were inoculated as a broth to seedlings of each BGN genotype in the pot experiment. While six seeds from each BGN genotype were coated with each of the following nitrogen-fixation bacteria (Bradyrhizobium japonicum strains), FA3, USDA110, IRJ2180A, and RACA6, nitrogen fertilizer (urea, 20 kg/ha) was applied as a check to the nitrogen-fixation bacteria to seedlings of BGN genotypes 2 weeks after planting in both glasshouses and fields. Uninoculated plants served as controls (zero inoculation and zero fertilization). The field experiments were arranged in Randomized Complete Block Design (RCBD), while the glasshouse experiments were arranged in Complete Randomized Design (CRD) in triplicate. The result gotten showed that higher nodule numbers and weight were recorded in TVSu-1739 and TVSu-475 in both locations and seasons compared to other genotypes; the highest nitrogen fixed values were recorded among BGN genotypes TVSu-1739, TVSu-1,698, TVSu-787, TVSu-365, TVSu-305, TVSu-710, and TVSu-1,606, with a range of (62-67 kg ha-1), and were mostly enhanced by RACA6 and USDA110 strains compared to other strains that were used.
RESUMO
Underutilized pulses and their wild relatives are typically stress tolerant and their seeds are packed with protein, fibers, minerals, vitamins, and phytochemicals. The consumption of such nutritionally dense legumes together with cereal-based food may promote global food and nutritional security. However, such species are deficient in a few or several desirable domestication traits thereby reducing their agronomic value, requiring further genetic enhancement for developing productive, nutritionally dense, and climate resilient cultivars. This review article considers 13 underutilized pulses and focuses on their germplasm holdings, diversity, crop-wild-crop gene flow, genome sequencing, syntenic relationships, the potential for breeding and transgenic manipulation, and the genetics of agronomic and stress tolerance traits. Recent progress has shown the potential for crop improvement and food security, for example, the genetic basis of stem determinacy and fragrance in moth bean and rice bean, multiple abiotic stress tolerant traits in horse gram and tepary bean, bruchid resistance in lima bean, low neurotoxin in grass pea, and photoperiod induced flowering and anthocyanin accumulation in adzuki bean have been investigated. Advances in introgression breeding to develop elite genetic stocks of grass pea with low ß-ODAP (neurotoxin compound), resistance to Mungbean yellow mosaic India virus in black gram using rice bean, and abiotic stress adaptation in common bean, using genes from tepary bean have been carried out. This highlights their potential in wider breeding programs to introduce such traits in locally adapted cultivars. The potential of de-domestication or feralization in the evolution of new variants in these crops are also highlighted.
RESUMO
Introduction: Bambara groundnut (BG) (Vigna subterranea [L.] Verdc) is an indigenous, resilient, but underutilized leguminous crop that occurs mostly as genetically heterogeneous landraces with limited information on the drought tolerant attributes. This study elucidates the associations between sequencing-based diversity array technology (DArTseq) and phenotypic character as well as differing indices related to drought tolerance in one hundred accessions of Bambara groundnut. Methods: The field experiments were conducted at IITA research stations in Kano and Ibadan between 2016 and 2018 planting seasons. The experiments were arranged in randomised complete block design with three replications, under the different water regimes. The phenotypic traits evaluated was further to construct the dendrogram. Genome-wide association mapping was conducted based on 5927 DArTs loci with < 20% missing data. Results and Discussions: The genome wide association study predicted drought tolerance in Bambara accessions for geometric mean productivity (GMP) and stress tolerance index (STI). TVSu-423 had the highest GMP and STI values (28.50, 2.40), while TVSu-2017 had the lowest at GMP (1.74) and STI (0.01) respectively. The relative water content (%) was significantly higher for accessions; TVSu-266 (60.35, 61.49), TVSu-2 (58.29, 53.94), and TVSu-411 (55.17, 58.92) in 2016/2017 and 2017/2018, respectively. The phenotypic characters studied delineated the accessions into two major clusters and five distinct sub-clusters, indicating variations across all the geographical locations. The 5,927 DArTseq genomic markers in association with STI further grouped the 100 accessions into two main clusters. TVSu-1897 from Botswana (Southern Africa) was in the first cluster, while the remaining 99 accessions from Western, Central, and Eastern Africa made up the second cluster. The eight significant Quantitative Trait Loci (QTLs) (24346377|F|0-22:A>G-22:A>G, 24384105|F|0-56:A>G33 :A> G, 24385643|F|0-53:G>C-53:G>C, 24385696|F|0-43:A>G-43:A>G, 4177257|F|0-44:A>T-44:A>T, 4182070|F|0-66:G>A-66:G>A, 4183483|F|0-24:G>A-24:G>A, 4183904|F|0-11:C>T-11:C>T) identified with Bonferroni threshold was in association with STI, indicative of variations under the drought-stressed condition. The observation of consistent SNPs in the 2016 and 2017 planting seasons, as well as in combination with the 2016 and 2017 planting seasons, led to the designation of these QTLs as significant. The drought selected accessions could form basis for hybridization breeding. The identified quantitative trait loci could be useful in marker-assisted selection in drought molecular breeding programs.
RESUMO
Cowpea (Vigna unguiculata L. Walp) is a staple crop for millions of people in sub-Saharan Africa. However, its production is challenged by various abiotic and biotic constraints, including fungal diseases. In February 2020, around 10% of cowpea plants in IITA-Ibadan research plots (N7°29'49'' E3°53'49'') had symptoms of cowpea anthracnose disease (CAD). Symptoms included reddish brown spots, necrotic lesions, and vein streaks (Fig. 1). Diseased leaves were collected and taken to the laboratory, cut into small discs (3 mm in diameter) at advancing edges of lesions, and surface disinfected. Dry leaf discs were plated on PDA and incubated at 28°C for 5 days and sub-cultured in PDA for another 7 days. Isolates yielded phenotypes similar to Colletotrichum spp. (Fig. 2). DNA templates of four isolates (CC17 NG, CC19 NG, CC21 NG, and CC24 NG) were amplified using primers of the actin (ACT; ACT512F and ACT783R) (Carbone and Kohn, 1999) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; GDF and GFR) (Templeton et al., 1992) genes and sequenced. The sequences were deposited in GenBank (accession numbers OP716557 to OP716560 for ACT and OP716561 to OP716564 for GADPH). BLASTn results on NCBI showed 98-100% identity of the four isolates with C. cliviicola. A bi-locus phylogenetic tree revealed that the isolates belong to the species C. cliviicola (Fig. 3) when compared with existing sequences in the GenBank (Table 1). To fulfill Koch's postulates, pathogenicity of each of the four C. cliviicola isolates was confirmed on 2-week-old cowpea plants cv. Ife Brown in screenhouse assays. Inocula were prepared from 7-d-old cultures washed with sterile water containing 0.1% TWEEN®20. Fungal suspensions were adjusted to 106 conidia/ml. Inoculations were carried out using the brush method. Leaves inoculated with sterile water containing 0.1% TWEEN®20 served as negative controls. Plants were kept in the screenhouse at room temperature for 21 days. All four C. cliviicola isolates produced CAD symptoms on inoculated leaves, while control leaves remained asymptomatic (Fig. 4). Each inoculated isolate was successfully re-isolated from symptomatic tissues and their identity confirmed. The fungus C. cliviicola is distributed in tropical and subtropical regions and has a wide host range, including several legumes (Damm et al. 2018). To our knowledge, this is the first report of C. cliviicola causing CAD in Nigeria and the world. There is the need to conduct a comprehensive distribution survey and develop appropriate control strategies in Nigeria. In addition, breeding for resistance to CAD in Nigeria should gear the efforts to all causal agents of the disease that occur across the country because historically CAD has been attributed to C. lindemuthianum and C. destructivum.
RESUMO
Seed size is an important yield and quality-determining trait in higher plants and is also crucial to their evolutionary fitness. In African yam bean (AYB), seed size varies widely among different accessions. However, the genetic basis of such variation has not been adequately documented. A genome-wide marker-trait association study was conducted to identify genomic regions associated with four seed size traits (seed length, seed width, seed thickness, and 100-seed weight) in a panel of 195 AYB accessions. A total of 5416 SNP markers were generated from the diversity array technology sequence (DArTseq) genotype-by-sequencing (GBS)- approach, in which 2491 SNPs were retained after SNP quality control and used for marker-trait association analysis. Significant phenotypic variation was observed for the traits. Broad-sense heritability ranged from 50.0% (seed width) to 66.4% (seed length). The relationships among the traits were positive and significant. Genome-wide association study (GWAS) using the general linear model (GLM) and the mixed linear model (MLM) approaches identified 12 SNP markers significantly associated with seed size traits across the six test environments. The 12 makers explained 6.5-10.8% of the phenotypic variation. Two markers (29420334|F|0-52:C>G-52:C>G and 29420736|F|0-57:G>T-57:G>T) with pleiotropic effects associated with seed width and seed thickness were found. A candidate gene search identified five significant markers (100026424|F|0-37:C>T-37:C>T, 100041049|F|0-42:G>C-42:G>C, 100034480|F|0-31:C>A-31:C>A, 29420365|F|0-55:C>G-55:C>G, and 29420736|F|0-57:G>T-57:G>T) located close to 43 putative genes whose encoding protein products are known to regulate seed size traits. This study revealed significant makers not previously reported for seed size in AYB and could provide useful information for genomic-assisted breeding in AYB.
Assuntos
Estudo de Associação Genômica Ampla , Sphenostylis , Sphenostylis/genética , Alelos , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Sementes/genéticaRESUMO
Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.
Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ásia Oriental , América do Sul , Triticum/genéticaRESUMO
Globally, climate change is a major factor that contributes significantly to food and nutrition insecurity, limiting crop yield and availability. Although efforts are being made to curb food insecurity, millions of people still suffer from malnutrition. For the United Nations (UN) Sustainable Development Goal of Food Security to be achieved, diverse cropping systems must be developed instead of relying mainly on a few staple crops. Many orphan legumes have untapped potential that can be of significance for developing improved cultivars with enhanced tolerance to changing climatic conditions. One typical example of such an orphan crop is Sphenostylis stenocarpa Hochst. Ex A. Rich. Harms, popularly known as African yam bean (AYB). The crop is an underutilised tropical legume that is climate-resilient and has excellent potential for smallholder agriculture in sub-Saharan Africa (SSA). Studies on AYB have featured morphological characterisation, assessment of genetic diversity using various molecular markers, and the development of tissue culture protocols for rapidly multiplying propagules. However, these have not translated into varietal development, and low yields remain a challenge. The application of suitable biotechnologies to improve AYB is imperative for increased yield, sustainable utilisation and conservation. This review discusses biotechnological strategies with prospective applications for AYB improvement. The potential risks of these strategies are also highlighted.
RESUMO
BACKGROUND: African Yam Bean (AYB) is an understudied and underutilized tuberous legume of tropical West and Central African origin. In these geographical regions, both seeds and tubers of AYB are important components of people's diets and a potential target as a nutritional security crop. The understanding of the genetic diversity among AYB accessions is thus an important component for both conservation and potential breeding programs. RESULTS: In this study, 93 AYB accessions were obtained from the International Institute of Tropical Agriculture (IITA) genebank and genotyped using 3722 SNP markers based on Restriction site-Associated DNA sequencing (RAD-Seq). Genetic data was analysed using multiple clustering methods for better understanding the distribution of genetic diversity across the population. Substantial genetic variability was observed in the present set of AYB accessions and different methodologies demonstrated that these accessions are divided into three to four main groups. The accessions were also analysed for important agronomic traits and successfully associated with their genetic clusters where great majority of accessions shared a similar phenotype. CONCLUSIONS: To our knowledge, this is the first study on predicting genotypic-phenotypic diversity relationship analysis in AYB. From a breeding perspective, we were able to identify specific diverse groups with precise phenotype such as seed or both seed and tuber yield purpose accessions. These results provide novel and important insights to support the utilization of this germplasm in AYB breeding programs.
Assuntos
Produtos Agrícolas/genética , Variação Genética , Genótipo , Técnicas de Genotipagem/métodos , Melhoramento Vegetal/métodos , Sphenostylis/genética , África , FenótipoRESUMO
Constant production of quality food should be a norm in any community, but climate change, increasing population, and unavailability of land for farming affect food production. As a result, food scarcity is affecting some communities, especially in the developing world. Finding a stable solution to this problem is a major cause of concern for researchers. Synergistic application of molecular marker techniques with next generation sequencing (NGS) technologies can unlock the potentials hidden in most crop genomes for improving yield and food availability. Most crops such as Bambara groundnut (BGN), Winged bean, and African yam bean are underutilized. These underutilized crops can compete with the major crops such as cowpea, soybean, maize, and rice, in areas of nutrition, ability to withstand drought stress, economic importance, and food production. One of these underutilized crops, BGN [Vigna subterranea (L.), Verdc.], is an indigenous African legume and can survive in tropical climates and marginal soils. In this review, we focus on the roles of BGN and the opportunities it possesses in tackling food insecurity and its benefits to local farmers. We will discuss BGN's potential impact on global food production and how the advances in NGS technologies can enhance its production.
RESUMO
Bambara groundnut (BGN) is a drought-tolerant crop majorly cultivated in sub-Saharan Africa. Due to a lack of extensive research, marginalization, lack of awareness, and lack of available fund among others, this crop's improvement has been limited. The development of this crop depends on evaluation and selection of unique and stable breeding lines in different environments. This study aims to estimate genetic diversity using morphological traits at different locations in 95 accessions of BGN collected from the Genebank of the International Institute of Tropical Agriculture (IITA), Ibadan. The experiment was carried out in three replicates at IITA experimental sites in two agroecological zones in Ibadan (7°40'19.62â³ N, 3°91'73.13â³ E) and Ikenne (6°51'00.873â³ N, 3°41'48.528â³ E) using a randomized complete block design. Ten vegetative growth traits and eight yield traits were scored. The data was subjected to ANOVA, PCA, correlation, and cluster analysis. Estimations of genetic parameters and broad sense heritability were carried out on the traits. ANOVA revealed significant variation in each trait except for days to emergence. Significant variation was also observed for accession and location interactions (genotype x environment interactions) for plant height, leaf length, leaf width, chlorophyll content, number of petioles, germination count, number of pods, number of seeds, seed length, seed width, and yield. PC1 and PC2 show 42.3% of the total variations observed by the PC, with seed thickness contributing more to PC1 and the number of seeds contributing more to PC2. Cluster analysis categorized the accessions into four distinct groups. The number of pods had the highest genotypic coefficient of variation of 32.55% and the phenotypic coefficient of variation of 97.61%, while seed length (0.63), seed width (0.54), and seed thickness (0.58) have high heritability values. The genetic advance was highest in yield (76.15%) and lowest in days to 50% germination (0.21%). This study can be used to predict appropriate agroecological zones for the planting of BGN while the knowledge of the diversity of the accessions based on the traits could serve a guide in selecting the best trait for the improvement of the crop.
RESUMO
The narrow base of genetic diversity characteristic of cowpea can be attributed to it being self-pollinating, evolving from narrow wild germplasm and exhibiting very limited gene flow between wild and cultivated types. Backcrossing to introduce simply inherited desirable traits and utilization of improved breeding lines and varieties as parents in crossing programs further narrowed the genetic base of cowpea varieties. In most cowpea breeding programs, genes for resistance and market traits were pyramided into lines characterized by high levels of acceptance to farmers and consumers. Besides predisposing widely distributed improved varieties to genetic vulnerability, a narrow base of genetic variation may be contributing to the plateauing in cowpea grain yield, which compromises genetic gains. Cross compatible wild relatives have not been used in variety development because breeders shy away from them due to their tiny seed size, unattractive seed coat color and texture, pod shattering, and susceptibility to viruses. A number of wild cowpea relatives, both within and outside section Catiang of Vigna species, have been evaluated for their reaction to cowpea insect pests and diseases. Vigna vexillata lines were resistant to the legume pod borer (Maruca vitrata), the cowpea weevil (Callosobruchus maculatus), and Striga gesnerioides but are cross incompatible with cultivated cowpea. Some lines among the cross compatible wild relative V. unguiculata ssp. dekindtiana were found to be resistant to aphid in the seedling stage, while others showed good levels of drought and heat tolerance. Molecular markers are being generated to identify quantitative trait loci (QTL) with effects on some desirable attributes in cowpea. Modern breeding tools, including transgenics, can be applied for the improvement of cowpea, bypassing the natural barriers of traditional breeding. Transgenic cowpea with Bt gene cry1Ab showing resistance to M. vitrata has been released in Nigeria. Genome editing, a powerful emerging tool, can also be used for developing improved cowpea varieties with durable resistance to pests and diseases.
RESUMO
West Africa is faced with significant challenges from climate change, including parts of the region becoming hotter with more variable rainfall. The Sahelian region in particular is already subject to severe droughts. To address this better adapted crop varieties (such as for cowpea) are clearly a central element, a complementary one is a greater use of resilient alternative crops especially underutilized legumes particularly Bambara groundnut, African yam bean, winged bean and Kersting's groundnut. Genetic diversity of these crops conserved in genebanks and farmer's field provides an opportunity to exploit climate resilient traits using cutting-edge genomic tools and to use genomics-assisted breeding to accelerate genetic gains in combination of rapid cycle breeding strategy to develop climate-resilient cultivars for sub-Saharan Africa.
Assuntos
Fabaceae , África Ocidental , Mudança Climática , Produtos Agrícolas/genética , Secas , Fabaceae/genéticaRESUMO
Bananas and plantains (Musa spp.) are used as nutritious foods, and at the same time, are a source of phytoconstituents for the pharmaceutical industry. As biological activities of especially the pulp and peel of Musa spp. have been documented, this study investigated the variation in the secondary metabolite profiles of the leaves from field, in vitro-grown and acclimatized accessions. The genetic fidelity of the diverse accessions was assessed using diversity array technology sequencing. It showed that the in vitro-grown accessions were true-to-type with the field samples. The antioxidant and anticholinesterase activities of the samples from different culture systems (field and in vitro) were evaluated by UV-spectrophotometry and compared to high-performance thin-layer chromatography-effect-directed analysis (HPTLC-EDA). The latter was applied for the first time for effect-directed profiling of the polar and medium polar sample components via different biochemical and biological assays. Compound zones showed acetyl-/butylrylcholinesterase inhibition (zones 1-4), α-/ß-glucosidase inhibition (zones 1 and 2) as well as antioxidative (zones 1-3) and antimicrobial (zone 4) activities. Structures were preliminary assigned by HPTLC-HRMS. The HPTLC was effective for bioactivity-guided characterization of the bioactive constituents in Musa spp. accessions. Accumulation of useful metabolites, especially compounds with antioxidant and anticholinesterase properties, was higher in samples from in vitro system. This validated the use of plant tissue culturing as an alternative method for large scale production of plant material and supply of bioactive constituents.