Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Sci Signal ; 17(826): eadh4475, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442201

RESUMO

The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3ß, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.


Assuntos
Aurora Quinase A , Neoplasias da Mama , Neoplasias Mamárias Animais , PTEN Fosfo-Hidrolase , Fator 1 de Elongação de Peptídeos , Animais , Feminino , Humanos , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/genética , Glicogênio Sintase Quinase 3 beta , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo
3.
Eur J Hum Genet ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355961

RESUMO

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.

4.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179821

RESUMO

De novo heterozygous missense mutations in EEF1A2, encoding neuromuscular translation-elongation factor eEF1A2, are associated with developmental and epileptic encephalopathies. We used CRISPR/Cas9 to recapitulate the most common mutation, E122K, in mice. Although E122K heterozygotes were not observed to have convulsive seizures, they exhibited frequent electrographic seizures and EEG abnormalities, transient early motor deficits and growth defects. Both E122K homozygotes and Eef1a2-null mice developed progressive motor abnormalities, with E122K homozygotes reaching humane endpoints by P31. The null phenotype is driven by progressive spinal neurodegeneration; however, no signs of neurodegeneration were observed in E122K homozygotes. The E122K protein was relatively stable in neurons yet highly unstable in skeletal myocytes, suggesting that the E122K/E122K phenotype is instead driven by loss of function in muscle. Nevertheless, motor abnormalities emerged far earlier in E122K homozygotes than in nulls, suggesting a toxic gain of function and/or a possible dominant-negative effect. This mouse model represents the first animal model of an EEF1A2 missense mutation with face-valid phenotypes and has provided mechanistic insights needed to inform rational treatment design.


Assuntos
Transtornos do Neurodesenvolvimento , Convulsões , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Knockout , Fibras Musculares Esqueléticas , Mutação/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/genética
5.
Mol Cell Neurosci ; 126: 103879, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429391

RESUMO

All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Fator 1 de Elongação de Peptídeos , Animais , Humanos , Camundongos , Mutação , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo
6.
Cell Mol Neurobiol ; 43(1): 237-249, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741697

RESUMO

SORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIß-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA breaks in vitro, suggesting that the observed differences may not be the result of aberrant neuronal activity in these cells. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Animais , Camundongos , Neurônios/metabolismo , Dano ao DNA , Linhagem Celular , Receptores de Superfície Celular/genética , Proteínas do Tecido Nervoso/metabolismo
7.
PLoS One ; 16(8): e0256181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388204

RESUMO

Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Genes Ligados ao Cromossomo X , Genoma Humano , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas do Tecido Nervoso/genética , Elementos Reguladores de Transcrição , Tenascina/genética , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Mapeamento Cromossômico , Estudos de Coortes , Modelos Animais de Doenças , Embrião não Mamífero , Exoma , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Frequência do Gene , Genótipo , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Camundongos , Proteínas do Tecido Nervoso/deficiência , Linhagem , Fenótipo , Tenascina/deficiência , Peixe-Zebra
8.
Dis Model Mech ; 14(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619078

RESUMO

In most mouse models of disease, the outward manifestation of a disorder can be measured easily, can be assessed with a trivial test such as hind limb clasping, or can even be observed simply by comparing the gross morphological characteristics of mutant and wild-type littermates. But what if we are trying to model a disorder with a phenotype that appears only sporadically and briefly, like epileptic seizures? The purpose of this Review is to highlight the challenges of modelling epilepsy, in which the most obvious manifestation of the disorder, seizures, occurs only intermittently, possibly very rarely and often at times when the mice are not under direct observation. Over time, researchers have developed a number of ways in which to overcome these challenges, each with their own advantages and disadvantages. In this Review, we describe the genetics of epilepsy and the ways in which genetically altered mouse models have been used. We also discuss the use of induced models in which seizures are brought about by artificial stimulation to the brain of wild-type animals, and conclude with the ways these different approaches could be used to develop a wider range of anti-seizure medications that could benefit larger patient populations.


Assuntos
Epilepsia , Animais , Encéfalo , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Camundongos
9.
Hum Mol Genet ; 29(10): 1592-1606, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32160274

RESUMO

Heterozygous de novo mutations in EEF1A2, encoding the tissue-specific translation elongation factor eEF1A2, have been shown to cause neurodevelopmental disorders including often severe epilepsy and intellectual disability. The mutational profile is unusual; ~50 different missense mutations have been identified but no obvious loss of function mutations, though large heterozygous deletions are known to be compatible with life. A key question is whether the heterozygous missense mutations operate through haploinsufficiency or a gain of function mechanism, an important prerequisite for design of therapeutic strategies. In order both to address this question and to provide a novel model for neurodevelopmental disorders resulting from mutations in EEF1A2, we created a new mouse model of the D252H mutation. This mutation causes the eEF1A2 protein to be expressed at lower levels in brain but higher in muscle in the mice. We compared both heterozygous and homozygous D252H and null mutant mice using behavioural and motor phenotyping alongside molecular modelling and analysis of binding partners. Although the proteomic analysis pointed to a loss of function for the D252H mutant protein, the D252H homozygous mice were more severely affected than null homozygotes on the same genetic background. Mice that are heterozygous for the missense mutation show no behavioural abnormalities but do have sex-specific deficits in body mass and motor function. The phenotyping of our novel mouse lines, together with analysis of molecular modelling and interacting proteins, suggest that the D252H mutation results in a gain of function.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fator 1 de Elongação de Peptídeos/genética , Animais , Modelos Animais de Doenças , Mutação com Ganho de Função/genética , Predisposição Genética para Doença , Haploinsuficiência/genética , Homozigoto , Humanos , Deficiência Intelectual/patologia , Camundongos , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/patologia
10.
Biosci Rep ; 40(1)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31950975

RESUMO

Zebrafish are valuable model organisms for the study of human single-gene disorders: they are genetically manipulable, their development is well understood, and mutant lines with measurable, disease-appropriate phenotypic abnormalities can be used for high throughput drug screening approaches. However, gene duplication events in zebrafish can result in redundancy of gene function, masking loss-of-function phenotypes and thus confounding this approach to disease modelling. Furthermore, recent studies have yielded contrasting results depending on whether specific genes are targeted using genome editing to make mutant lines, or whether morpholinos are used (morphants). De novo missense mutations in the human gene EEF1A2, encoding a tissue-specific translation elongation factor, cause severe neurodevelopmental disorders; there is a real need for a model system to study these disorders and we wanted to explore the possibility of a zebrafish model. We identified four eef1a genes and examined their developmental and tissue-specific expression patterns: eef1a1l1 is first to be expressed while eef1a2 is only detected later during development. We then determined the effects of introducing null mutations into translation elongation factor 1A2 (eEF1A2) in zebrafish using CRISPR/Cas9 gene editing, in order to compare the results with previously described morphants, and with severe neurodegenerative lethal phenotype of eEF1A2-null mice. In contrast with both earlier analyses in zebrafish using morpholinos and with the mouse eEF1A2-null mice, disruption of the eef1a2 gene in zebrafish is compatible with normal lifespan. The resulting lines, however, may provide a valuable platform for studying the effects of expression of mutant human eEF1A2 mRNA.


Assuntos
Fator 1 de Elongação de Peptídeos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Células HEK293 , Humanos , Mutação , Fator 1 de Elongação de Peptídeos/metabolismo , Fenótipo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
12.
Virology ; 530: 65-74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782564

RESUMO

The eukaryotic translation elongation factor 1A (eEF1A) has two cell-type specific paralogs, eEF1A1 and eEF1A2. Both paralogs undertake a canonical function in delivering aminoacyl-tRNA to the ribosome for translation, but differences in other functions are emerging. eEF1A1 has been reported to be important for the replication of many viruses, but no study has specifically linked the eEF1A2 paralog. We have previously demonstrated that eEF1A1 directly interacts with HIV-1 RT and supports efficient reverse transcription. Here, we showed that RT interacted more strongly with eEF1A1 than with eEF1A2 in immunoprecipitation assay. Biolayer interferometry using eEF1A paralogs showed different association and dissociation rates with RT. Over expressed eEF1A1, but not eEF1A2, was able to restore HIV-1 reverse transcription efficiency in HEK293T cells with endogenous eEF1A knocked-down and HIV-1 reverse transcription efficiency correlated with the level of eEF1A1 mRNA, but not to eEF1A2 mRNA in both HEK293T and primary human skeletal muscle cells.


Assuntos
Transcriptase Reversa do HIV/metabolismo , HIV-1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Fator 1 de Elongação de Peptídeos/metabolismo , Transcrição Reversa , Células HEK293 , Humanos , Imunoprecipitação , Células Musculares , Ligação Proteica
13.
Hum Mutat ; 40(2): 131-141, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30370994

RESUMO

The multi-subunit eEF1 complex plays a crucial role in de novo protein synthesis. The central functional component of the complex is eEF1A, which occurs as two independently encoded variants with reciprocal expression patterns: whilst eEF1A1 is widely expressed, eEF1A2 is found only in neurons and muscle. Heterozygous mutations in the gene encoding eEF1A2, EEF1A2, have recently been shown to cause epilepsy, autism, and intellectual disability. The remaining subunits of the eEF1 complex, eEF1Bα, eEF1Bδ, eEF1Bγ, and valyl-tRNA synthetase (VARS), together form the GTP exchange factor for eEF1A and are ubiquitously expressed, in keeping with their housekeeping role. However, mutations in the genes encoding these subunits EEF1B2 (eEF1Bα), EEF1D (eEF1Bδ), and VARS (valyl-tRNA synthetase) have also now been identified as causes of neurodevelopmental disorders. In this review, we describe the mutations identified so far in comparison with the degree of normal variation in each gene, and the predicted consequences of the mutations on the functions of the proteins and their isoforms. We discuss the likely effects of the mutations in the context of the role of protein synthesis in neuronal development.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Fator 1 de Elongação de Peptídeos/genética , Transtorno Autístico/genética , Transtorno Autístico/patologia , Epilepsia/genética , Epilepsia/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Valina-tRNA Ligase/genética
14.
Sci Rep ; 7: 46019, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378778

RESUMO

De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/- mice, showing that the mutant protein is essentially non-functional.


Assuntos
Alelos , Morte Súbita , Mutação/genética , Fator 1 de Elongação de Peptídeos/genética , Convulsões/genética , Animais , Sequência de Bases , Peso Corporal , Sistemas CRISPR-Cas/genética , Edição de Genes , Regulação da Expressão Gênica , Genoma , Genótipo , Camundongos , Degeneração Neural/patologia , Fator 1 de Elongação de Peptídeos/metabolismo , Medula Espinal/patologia
15.
Wellcome Open Res ; 1: 13, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27976757

RESUMO

The recent identification of multiple new genetic causes of neurological disorders highlights the need for model systems that give experimental access to the underlying biology. In particular, the ability to couple disease-causing mutations with human neuronal differentiation systems would be beneficial. Gene targeting is a well-known approach for dissecting gene function, but low rates of homologous recombination in somatic cells (including neuronal cells) have traditionally impeded the development of robust cellular models of neurological disorders. Recently, however, CRISPR/Cas9 gene editing technologies have expanded the number of systems within which gene targeting is possible. Here we adopt as a model system LUHMES cells, a commercially available diploid human female mesencephalic cell line that differentiates into homogeneous mature neurons in 1-2 weeks. We describe optimised methods for transfection and selection of neuronal progenitor cells carrying targeted genomic alterations using CRISPR/Cas9 technology. By targeting the endogenous X-linked MECP2 locus, we introduced four independent missense mutations that cause the autism spectrum disorder Rett syndrome and observed the desired genetic structure in 3-26% of selected clones, including gene targeting of the inactive X chromosome. Similar efficiencies were achieved by introducing neurodevelopmental disorder-causing mutations at the autosomal EEF1A2 locus on chromosome 20. Our results indicate that efficiency of genetic "knock-in" is determined by the location of the mutation within the donor DNA molecule. Furthermore, we successfully introduced an mCherry tag at the MECP2 locus to yield a fusion protein, demonstrating that larger insertions are also straightforward in this system. We suggest that our optimised methods for altering the genome of LUHMES cells make them an attractive model for the study of neurogenetic disorders.

16.
Mol Genet Genomic Med ; 4(4): 465-74, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27441201

RESUMO

BACKGROUND: Exome sequencing has led to the discovery of mutations in novel causative genes for epilepsy. One such gene is EEF1A2, encoding a neuromuscular specific translation elongation factor, which has been found to be mutated de novo in five cases of severe epilepsy. We now report on a further seven cases, each with a different mutation, of which five are newly described. METHODS: New cases were identified and sequenced through the Deciphering Developmental Disabilities project, via direct contact with neurologists or geneticists, or recruited via our website. RESULTS: All the mutations cause epilepsy and intellectual disability, but with a much wider range of severity than previously identified. All new cases share specific subtle facial dysmorphic features. Each mutation occurs at an evolutionarily highly conserved amino acid position indicating strong structural or functional selective pressure. CONCLUSIONS: EEF1A2 should be considered as a causative gene not only in cases of epileptic encephalopathy but also in children with less severe epilepsy and intellectual disability. The emergence of a possible discernible phenotype, a broad nasal bridge, tented upper lip, everted lower lip and downturned corners of the mouth may help in identifying patients with mutations in EEF1A2.

17.
PLoS Pathog ; 11(12): e1005289, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26624286

RESUMO

Reverse transcription is the central defining feature of HIV-1 replication. We previously reported that the cellular eukaryotic elongation factor 1 (eEF1) complex associates with the HIV-1 reverse transcription complex (RTC) and the association is important for late steps of reverse transcription. Here we show that association between the eEF1 and RTC complexes occurs by a strong and direct interaction between the subunit eEF1A and reverse transcriptase (RT). Using biolayer interferometry and co-immunoprecipitation (co-IP) assays, we show that association between the eEF1 and RTC complexes occurs by a strong (KD ~3-4 nM) and direct interaction between eEF1A and reverse transcriptase (RT). Biolayer interferometry analysis of cell lysates with titrated levels of eEF1A indicates it is a predominant cellular RT binding protein. Both the RT thumb and connection domains are required for interaction with eEF1A. A single amino acid mutation, W252A, within the thumb domain impaired co-IP between eEF1A and RT, and also significantly reduced the efficiency of late reverse transcription and virus replication when incorporated into infectious HIV-1. Molecular modeling analysis indicated that interaction between W252 and L303 are important for RT structure, and their mutation to alanine did not impair heterodimerisation, but negatively impacted interaction with eEF1A. Didemnin B, which specifically binds eEF1A, potently inhibited HIV-1 reverse transcription by greater than 2 logs at subnanomolar concentrations, especially affecting reverse transcription late DNA synthesis. Analysis showed reduced levels of RTCs from HIV-1-infected HEK293T treated with didemnin B compared to untreated cells. Interestingly, HIV-1 with a W252A RT mutation was resistant to didemnin B negative effects showing that didemnin B affects HIV-1 by targeting the RT-eEF1A interaction. The combined evidence indicates a direct interaction between eEF1A and RT is crucial for HIV reverse transcription and replication, and the RT-eEF1A interaction is a potential drug target.


Assuntos
Infecções por HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/fisiologia , Fator 1 de Elongação de Peptídeos/metabolismo , Transcrição Reversa/fisiologia , Replicação Viral/fisiologia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Imunoprecipitação
18.
PLoS One ; 9(12): e114117, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25436608

RESUMO

Translation elongation is the stage of protein synthesis in which the translation factor eEF1A plays a pivotal role that is dependent on GTP exchange. In vertebrates, eEF1A can exist as two separately encoded tissue-specific isoforms, eEF1A1, which is almost ubiquitously expressed, and eEF1A2, which is confined to neurons and muscle. The GTP exchange factor for eEF1A1 is a complex called eEF1B made up of subunits eEF1Bα, eEF1Bδ and eEF1Bγ. Previous studies have cast doubt on the ability of eEF1B to interact with eEF1A2, suggesting that this isoform might use a different GTP exchange factor. We show that eEF1B subunits are all widely expressed to varying degrees in different cell lines and tissues, and at different stages of development. We show that ablation of any of the subunits in human cell lines has a small but significant impact on cell viability and cycling. Finally, we show that both eEF1A1 and eEF1A2 colocalise with all eEF1B subunits, in such close proximity that they are highly likely to be in a complex.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/análise , Fator 1 de Elongação de Peptídeos/análise , Animais , Linhagem Celular , Sobrevivência Celular , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Fator 1 de Elongação de Peptídeos/genética , Interferência de RNA
19.
Elife ; 3: e03164, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25233275

RESUMO

Translation elongation factor eEF1A has a well-defined role in protein synthesis. In this study, we demonstrate a new role for eEF1A: it participates in the entire process of the heat shock response (HSR) in mammalian cells from transcription through translation. Upon stress, isoform 1 of eEF1A rapidly activates transcription of HSP70 by recruiting the master regulator HSF1 to its promoter. eEF1A1 then associates with elongating RNA polymerase II and the 3'UTR of HSP70 mRNA, stabilizing it and facilitating its transport from the nucleus to active ribosomes. eEF1A1-depleted cells exhibit severely impaired HSR and compromised thermotolerance. In contrast, tissue-specific isoform 2 of eEF1A does not support HSR. By adjusting transcriptional yield to translational needs, eEF1A1 renders HSR rapid, robust, and highly selective; thus, representing an attractive therapeutic target for numerous conditions associated with disrupted protein homeostasis, ranging from neurodegeneration to cancer.


Assuntos
Resposta ao Choque Térmico/genética , Fator 1 de Elongação de Peptídeos/genética , Biossíntese de Proteínas , Transcrição Gênica , Regiões 3' não Traduzidas/genética , Transporte Ativo do Núcleo Celular/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Fatores de Transcrição de Choque Térmico , Temperatura Alta , Humanos , Immunoblotting , Camundongos , Microscopia de Fluorescência , Fator 1 de Elongação de Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Biol Direct ; 8: 29, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24220286

RESUMO

REVIEWERS: This article was reviewed by Frank Eisenhaber and Ramanathan Sowdhamini.Translation elongation factors eEF1A1 and eEF1A2 are 92% identical but exhibit non-overlapping expression patterns. While the two proteins are predicted to have similar tertiary structures, it is notable that the minor variations between their sequences are highly localised within their modelled structures. We used recently available high-throughput "omics" data to assess the spatial location of post-translational modifications and discovered that they are highly enriched on those surface regions of the protein that correspond to the clusters of sequence variation. This observation suggests how these two isoforms could be differentially regulated allowing them to perform distinct functions.


Assuntos
Variação Genética , Fator 1 de Elongação de Peptídeos/genética , Processamento de Proteína Pós-Traducional , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA