Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825750

RESUMO

G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.

2.
Biochem Pharmacol ; 220: 116013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151077

RESUMO

GPR101 is an orphan G protein-coupled receptor that promotes growth hormone secretion in the pituitary. The microduplication of the GPR101 gene has been linked with the X-linked acrogigantism, or X-LAG, syndrome. This disease is characterized by excessive growth hormone secretion and abnormal rapid growth beginning early in life. Mechanistically, GPR101 induces growth hormone secretion through constitutive activation of multiple heterotrimeric G proteins. However, the full scope of GPR101 signaling remains largely elusive. Herein, we investigated the association of GPR101 to multiple transducers and uncovered an important basal interaction with Arrestin 2 (ß-arrestin 1) and Arrestin 3 (ß-arrestin 2). By using a GPR101 mutant lacking the C-terminus and cell lines with an Arrestin 2/3 null background, we show that the arrestin association leads to constitutive clathrin- and dynamin-mediated GPR101 internalization. To further highlight GPR101 intracellular fate, we assessed the colocalization of GPR101 with Rab protein markers. Internalized GPR101 was mainly colocalized with the early endosome markers, Rab5 and EEA-1, and to a lesser degree with the late endosome marker Rab7. However, GPR101 was not colocalized with the recycling endosome marker Rab11. These findings show that the basal arrestin recruitment by GPR101 C-terminal tail drives the receptor constitutive clathrin-mediated internalization. Intracellularly, GPR101 concentrates in the endosomal compartment and is degraded through the lysosomal pathway. In conclusion, we uncovered a constitutive intracellular trafficking of GPR101 that potentially represents an important layer of regulation of its signaling and function.


Assuntos
Arrestinas , Receptores Acoplados a Proteínas G , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Arrestinas/genética , Arrestinas/metabolismo , beta-Arrestina 2/metabolismo , Hormônio do Crescimento , Clatrina/metabolismo , Endocitose
4.
Sci Rep ; 8(1): 4501, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540796

RESUMO

ShcA is an adaptor protein that binds to the cytoplasmic tail of receptor tyrosine kinases and of the Low Density Lipoprotein-related receptor 1 (LRP1), a trans-membrane receptor that protects against atherosclerosis. Here, we examined the role of endothelial ShcA in atherosclerotic lesion formation. We found that atherosclerosis progression was markedly attenuated in mice deleted for ShcA in endothelial cells, that macrophage content was reduced at the sites of lesions, and that adhesion molecules such as the intercellular adhesion molecule-1 (ICAM-1) were severely reduced. Our data indicate that transcriptional regulation of ShcA by the zinc-finger E-box-binding homeobox 1 (ZEB1) and the Hippo pathway effector YAP, promotes ICAM-1 expression independently of p-NF-κB, the primary driver of adhesion molecules expressions. In addition, ShcA suppresses endothelial Akt and nitric oxide synthase (eNOS) expressions. Thus, through down regulation of eNOS and ZEB1-mediated ICAM-1 up regulation, endothelial ShcA promotes monocyte-macrophage adhesion and atherosclerotic lesion formation. Reducing ShcA expression in endothelial cells may represent an obvious therapeutic approach to prevent atherosclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA