Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Phycol ; 52(6): 1064-1084, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27633521

RESUMO

The new benthic toxic dinoflagellate, Ostreopsis fattorussoi sp. nov., is described from the Eastern Mediterranean Sea, Lebanon and Cyprus coasts, and is supported by morphological and molecular data. The plate formula, Po, 3', 7″, 6c, 7s, 5‴, 2'''', is typical for the Ostreopsis genus. It differs from all other Ostreopsis species in that (i) the curved suture between plates 1' and 3' makes them approximately hexagonal, (ii) the 1' plate lies in the left half of the epitheca and is obliquely orientated leading to a characteristic shape of plate 6″. The round thecal pores are bigger than the other two Mediterranean species (O. cf. ovata and O. cf. siamensis). O. fattorussoi is among the smallest species of the genus (DV: 60.07 ± 5.63 µm, AP: 25.66 ± 2.97 µm, W: 39.81 ± 5.05 µm) along with O. ovata. Phylogenetic analyses based on the LSU and internal transcribed spacer rDNA shows that O. fattorussoi belongs to the Atlantic/Mediterranean Ostreopsis spp. clade separated from the other Ostreopsis species. Ostreopsis fattorussoi produces OVTX-a and structural isomers OVTX-d and -e, O. cf. ovata is the only other species of this genus known to produce these toxins. The Lebanese O. fattorussoi did not produce the new palytoxin-like compounds (ovatoxin-i, ovatoxin-j1 , ovatoxin-j2 , and ovatoxin-k) that were previously found in O. fattorussoi from Cyprus. The toxin content was in the range of 0.28-0.94 pg · cell-1 . On the Lebanon coast, O. fattorussoi was recorded throughout the year 2015 (temperature range 18°C-31.5°C), with peaks in June and August.


Assuntos
Dinoflagellida/classificação , Chipre , DNA de Algas/genética , Dinoflagellida/genética , Dinoflagellida/ultraestrutura , Líbano , Mar Mediterrâneo , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
2.
PLoS One ; 11(7): e0158484, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27459093

RESUMO

In this study, we investigated, for the first time, the potential impact of environmental changes on zooplankton abundance over a fourteen year period (2000-2013) at an offshore station in the Eastern Mediterranean Sea (the Levantine basin, offshore Lebanon). Samples were collected monthly and analyzed using the semi-automated system ZooScan. Salinity, temperature and phytoplankton abundance (nano and microphytoplankton) were also measured. Results show no significant temporal trend in sea surface temperature over the years. Between 2005-2010, salinity in the upper layer (0-80 m) of the Levantine basin increased (~0.3°C). During this 5 year period, total zooplankton abundance significantly increased. These modifications were concomitant to the activation of Aegean Sea as a source of dense water formation as part of the "Eastern Mediterranean Transient-like" event. The results of the present study suggested that zooplankton benefited from enhanced phytoplankton production during the mixing years of the event. Changes in the phenology of some taxa were observed accordingly with a predominantly advanced peak of zooplankton abundance. In conclusion, long-term changes in zooplankton abundance were related to the Levantine thermohaline circulation rather than sea surface warming. Sampling must be maintained to assess the impact of long-term climate change on zooplankton communities.


Assuntos
Ecossistema , Água do Mar , Zooplâncton , Animais , Meio Ambiente , Líbano , Mar Mediterrâneo , Fitoplâncton , Salinidade , Estações do Ano , Análise Espaço-Temporal , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA