RESUMO
BACKGROUND: Biomarker analyses are an integral part of cancer research. Despite the intense efforts to identify and characterize biomarkers in cancer patients, little is known regarding the natural variation of biomarkers in healthy populations. Here we conducted a clinical study to evaluate the natural variability of biomarkers over time in healthy participants. METHODS: The angiome multiplex array, a panel of 25 circulating protein biomarkers, was assessed in 28 healthy participants across 8 timepoints over the span of 60 days. We utilized the intraclass correlation coefficient (ICC) to quantify the reliability of the biomarkers. Adjusted ICC values were calculated under the framework of a linear mixed-effects model, taking into consideration age, sex, body mass index (BMI), fasting status, and sampling factors. RESULTS: ICC was calculated to determine the reliability of each biomarker. HGF was the most stable marker (ICC=0.973), while PDGF-BB was the most variable marker (ICC=0.167). In total, ICC analyses revealed that 22 out of 25 measured biomarkers display good (≥0.4) to excellent (>0.75) ICC values. Three markers (PDGF-BB, TGF-ï¢1, PDGF-AA) had ICC values <0.4. Greater age was associated with higher IL-6 (p=0.0114). Higher BMI was associated with higher levels of IL-6 (p=0.0003) and VEGF-R3 (p=0.0045). CONCLUSIONS: Of the 25 protein biomarkers measured over this short time period, 22 markers were found to have good or excellent ICC values, providing additional validation for this biomarker assay. IMPACT: This data further supports the validation of the angiome biomarker assay and its application as an integrated biomarker in clinical trial testing.
RESUMO
OBJECTIVE: Combination cediranib/olaparib has reported activity in relapsed ovarian cancer. This phase 2 trial investigated the activity of cediranib/olaparib in relapsed ovarian cancer and its association with homologous recombination deficiency (HRD). METHODS: Seventy patients were enrolled to cohorts of either platinum-sensitive or platinum-resistant ovarian cancer and received olaparib tablets 200 mg twice daily and cediranib tablets 30 mg once daily under a continuous dosing schedule. HRD testing was performed on pre-treatment, on-treatment and archival biopsies by sequencing key homologous recombination repair (HRR) genes and by genomic LOH analysis. The primary objective for the platinum-sensitive cohort was the association of HRD, defined as presence of HRR gene mutation, with progression-free survival (PFS). The primary objective for the platinum-resistant cohort was objective response rate (ORR), with a key secondary endpoint evaluating the association of HRD status with activity. RESULTS: In platinum-sensitive ovarian cancer (N = 35), ORR was 77.1% (95% CI 59.9-89.6%) and median PFS was 16.4 months (95% CI 13.2-18.6). Median PFS in platinum-sensitive HRR-HRD cancers (N = 22) was 16.8 months (95% CI 11.3-18.6), and 16.4 months (95% CI 9.4-NA) in HRR-HR proficient cancers (N = 13; p = 0.57). In platinum-resistant ovarian cancer (N = 35), ORR was 22.9% (95% CI 10.4-40.1%) with median PFS 6.8 months (95% CI 4.2-9.1). Median PFS in platinum-resistant HRR-HRD cancers (N = 7) was 10.5 months (95% CI 3.6-NA) and 5.6 months (95% CI 3.6-7.6) in HRR-HR proficient cancers (N = 18; p = 0.23). CONCLUSIONS: Cediranib/olaparib had clinical activity in both platinum-sensitive and -resistant ovarian cancer. Presence of HRR gene mutations was not associated with cediranib/olaparib activity in either setting.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Neoplasias Ovarianas , Ftalazinas , Piperazinas , Quinazolinas , Humanos , Feminino , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Pessoa de Meia-Idade , Resistencia a Medicamentos Antineoplásicos/genética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Adulto , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Quinazolinas/administração & dosagem , Quinazolinas/uso terapêutico , Recombinação Homóloga , Intervalo Livre de Progressão , Idoso de 80 Anos ou mais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , IndóisRESUMO
OBJECTIVE: Wee1 kinase is a crucial regulator of the G2/M checkpoint which prevents entry of damaged DNA into mitosis. Adavosertib (AZD1775), a selective inhibitor of Wee1, induces G2 escape and increases cytotoxicity when combined with DNA damaging agents. We aimed to evaluate the safety and efficacy of adavosertib in combination with definitive pelvic radiotherapy and concurrent cisplatin in patients with gynecological cancers. METHODS: A multi-institutional, open-label phase I trial was designed to assess dose escalation (3+3 design) of adavosertib in combination with standard chemoradiation. Eligible patients with locally advanced cervical, endometrial or vaginal tumors were treated with a 5-week course of pelvic external beam radiation 45-50 Gy in 1.8-2 Gy daily fractions plus concurrent weekly cisplatin 40 mg/m2 and adavosertib 100 mg/m2 on days 1, 3 and 5 of each week during chemoradiation. The primary endpoint was to determine the recommended phase II dose of adavosertib. Secondary endpoints included toxicity profile and preliminary efficacy. RESULTS: Ten patients were enrolled (nine locally advanced cervical and one endometrial cancer). Two patients experienced a dose-limiting toxicity at dose level 1 (adavosertib 100 mg by mouth daily on days 1, 3 and 5), including one patient with grade 4 thrombocytopenia, and one with treatment hold >1 week due to grade 1 creatinine elevation and grade 1 thrombocytopenia. At dose level -1 (adavosertib 100 mg by mouth daily on days 3 and 5), one out of five patients enrolled had a dose-limiting toxicity in the form of persistent grade 3 diarrhea. The overall response rate at 4 months was 71.4%, including four complete responses. At 2 years follow-up, 86% of patients were alive and progression-free. CONCLUSION: The recommended phase II dose could not be determined due to clinical toxicity and early trial closure. Preliminary efficacy appears promising, yet selecting the adequate dose/schedule in combination chemoradiation warrants further investigation to limit overlapping toxicities.
Assuntos
Antineoplásicos , Trombocitopenia , Neoplasias do Colo do Útero , Feminino , Humanos , Cisplatino/uso terapêutico , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Trombocitopenia/induzido quimicamente , Trombocitopenia/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
KRAS mutations are prevalent in patients with pancreatic ductal adenocarcinoma (PDAC) and are critical to fostering tumor growth in part by aberrantly rewiring glucose, amino acid, and lipid metabolism. Obesity is a modifiable risk factor for pancreatic cancer. Corroborating this epidemiological observation, mice harboring mutant KRAS are highly vulnerable to obesogenic high-fat diet (HFD) challenges leading to the development of PDAC with high penetrance. However, the contributions of other macronutrient diets, such as diets rich in carbohydrates that are regarded as a more direct source to fuel glycolysis for cancer cell survival and proliferation than HFD, to pancreatic tumorigenesis remain unclear. In this study, we compared the differential effects of a high-carbohydrate diet (HCD), an HFD, and a high-protein diet (HPD) in PDAC development using a mouse model expressing an endogenous level of mutant KRASG12D specifically in pancreatic acinar cells. Our study showed that although with a lower tumorigenic capacity than chronic HFD, chronic HCD promoted acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions with increased inflammation, fibrosis, and cell proliferation compared to the normal diet (ND) in KrasG12D/+ mice. By contrast, chronic HPD showed no significant adverse effects compared to the ND. Furthermore, ablation of pancreatic acinar cell cyclooxygenase 2 (Cox-2) in KrasG12D/+ mice abrogated the adverse effects induced by HCD, suggesting that diet-induced pancreatic inflammation is critical for promoting oncogenic KRAS-mediated neoplasia. These results indicate that diets rich in different macronutrients have differential effects on pancreatic tumorigenesis in which the ensuing inflammation exacerbates the process. Management of macronutrient intake aimed at thwarting inflammation is thus an important preventive strategy for patients harboring oncogenic KRAS.
RESUMO
BACKGROUND: Patients with non-small-cell lung cancer (NSCLC) that is resistant to PD-1 and PD-L1 (PD[L]-1)-targeted therapy have poor outcomes. Studies suggest that radiotherapy could enhance antitumour immunity. Therefore, we investigated the potential benefit of PD-L1 (durvalumab) and CTLA-4 (tremelimumab) inhibition alone or combined with radiotherapy. METHODS: This open-label, multicentre, randomised, phase 2 trial was done by the National Cancer Institute Experimental Therapeutics Clinical Trials Network at 18 US sites. Patients aged 18 years or older with metastatic NSCLC, an Eastern Cooperative Oncology Group performance status of 0 or 1, and progression during previous PD(L)-1 therapy were eligible. They were randomly assigned (1:1:1) in a web-based system by the study statistician using a permuted block scheme (block sizes of three or six) without stratification to receive either durvalumab (1500 mg intravenously every 4 weeks for a maximum of 13 cycles) plus tremelimumab (75 mg intravenously every 4 weeks for a maximum of four cycles) alone or with low-dose (0·5 Gy delivered twice per day, repeated for 2 days during each of the first four cycles of therapy) or hypofractionated radiotherapy (24 Gy total delivered over three 8-Gy fractions during the first cycle only), 1 week after initial durvalumab-tremelimumab administration. Study treatment was continued until 1 year or until progression. The primary endpoint was overall response rate (best locally assessed confirmed response of a partial or complete response) and, along with safety, was analysed in patients who received at least one dose of study therapy. The trial is registered with ClinicalTrials.gov, NCT02888743, and is now complete. FINDINGS: Between Aug 24, 2017, and March 29, 2019, 90 patients were enrolled and randomly assigned, of whom 78 (26 per group) were treated. This trial was stopped due to futility assessed in an interim analysis. At a median follow-up of 12·4 months (IQR 7·8-15·1), there were no differences in overall response rates between the durvalumab-tremelimumab alone group (three [11·5%, 90% CI 1·2-21·8] of 26 patients) and the low-dose radiotherapy group (two [7·7%, 0·0-16·3] of 26 patients; p=0·64) or the hypofractionated radiotherapy group (three [11·5%, 1·2-21·8] of 26 patients; p=0·99). The most common grade 3-4 adverse events were dyspnoea (two [8%] in the durvalumab-tremelimumab alone group; three [12%] in the low-dose radiotherapy group; and three [12%] in the hypofractionated radiotherapy group) and hyponatraemia (one [4%] in the durvalumab-tremelimumab alone group vs two [8%] in the low-dose radiotherapy group vs three [12%] in the hypofractionated radiotherapy group). Treatment-related serious adverse events occurred in one (4%) patient in the durvalumab-tremelimumab alone group (maculopapular rash), five (19%) patients in the low-dose radiotherapy group (abdominal pain, diarrhoea, dyspnoea, hypokalemia, and respiratory failure), and four (15%) patients in the hypofractionated group (adrenal insufficiency, colitis, diarrhoea, and hyponatremia). In the low-dose radiotherapy group, there was one death from respiratory failure potentially related to study therapy. INTERPRETATION: Radiotherapy did not increase responses to combined PD-L1 plus CTLA-4 inhibition in patients with NSCLC resistant to PD(L)-1 therapy. However, PD-L1 plus CTLA-4 therapy could be a treatment option for some patients. Future studies should refine predictive biomarkers in this setting. FUNDING: The US National Institutes of Health and the Dana-Farber Cancer Institute.
Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/terapia , Hipofracionamento da Dose de Radiação , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia Combinada , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Dosagem RadioterapêuticaRESUMO
Comprehensive genomic profiling to inform targeted therapy selection is a central part of oncology care. However, the volume and complexity of alterations uncovered through genomic profiling make it difficult for oncologists to choose the most appropriate therapy for their patients. Here, we present a solution to this problem, The Molecular Registry of Tumors (MRT) and our Molecular Tumor Board (MTB). PATIENTS AND METHODS: MRT is an internally developed system that aggregates and normalizes genomic profiling results from multiple sources. MRT serves as the foundation for our MTB, a team that reviews genomic results for all Duke University Health System cancer patients, provides notifications for targeted therapies, matches patients to biomarker-driven trials, and monitors the molecular landscape of tumors at our institution. RESULTS: Among 215 patients reviewed by our MTB over a 6-month period, we identified 176 alterations associated with therapeutic sensitivity, 15 resistance alterations, and 51 alterations with potential germline implications. Of reviewed patients, 17% were subsequently treated with a targeted therapy. For 12 molecular therapies approved during the course of this work, we identified between two and 71 patients who could qualify for treatment based on retrospective MRT data. An analysis of 14 biomarker-driven clinical trials found that MRT successfully identified 42% of patients who ultimately enrolled. Finally, an analysis of 4,130 comprehensive genomic profiles from 3,771 patients revealed that the frequency of clinically significant therapeutic alterations varied from approximately 20% to 70% depending on the tumor type and sequencing test used. CONCLUSION: With robust informatics tools, such as MRT, and the right MTB structure, a precision cancer medicine program can be developed, which provides great benefit to providers and patients with cancer.
Assuntos
Neoplasias , Centros Médicos Acadêmicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/genética , Medicina de Precisão/métodos , Sistema de Registros , Estudos Retrospectivos , UniversidadesRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) mutations have been considered a critical driver of PDAC initiation and progression. However, the effects of mutant KRAS alone do not recapitulate the full spectrum of pancreatic pathologies associated with PDAC development in adults. Historically, mutant KRAS was regarded as constitutively active; however, recent studies have shown that endogenous levels of mutant KRAS are not constitutively fully active and its activity is still subject to up-regulation by upstream stimuli. Obesity is a metabolic disease that induces a chronic, low-grade inflammation called meta-inflammation and has long been recognized clinically as a major modifiable risk factor for pancreatic cancer. It has been shown in different animal models that obesogenic high-fat diet (HFD) and pancreatic inflammation promote the rapid development of mutant KRAS-mediated PDAC with high penetrance. However, it is not clear why the pancreas with endogenous levels of mutant KRAS is vulnerable to chronic HFD and inflammatory challenges. Recently, the discovery of fibroblast growth factor 21 (FGF21) as a novel anti-obesity and anti-inflammatory factor and as a downstream target of mutant KRAS has shed new light on this problem. This review is intended to provide an update on our knowledge of the vulnerability of the pancreas to KRAS-mediated invasive PDAC in the context of challenges engendered by obesity and associated inflammation.
RESUMO
BACKGROUND: IL-2 inducible kinase (ITK) is highly expressed in metastatic melanomas and its inhibition suppresses melanoma cell proliferation. We hypothesize that ibrutinib has a direct antitumor effect in melanoma cell lines and that treatment of metastatic melanomas with ibrutinib induces antitumor responses. METHODS: We assessed the ibrutinib effect on melanoma cell proliferation, apoptosis, and motility. Patients with metastatic melanoma refractory to PD-1 and MAPK inhibitors (if BRAFV600-mutant) were treated with ibrutinib, 840 mg PO QD, as part of a phase II clinical trial (clinicaltrials.gov NCT02581930). RESULTS: Melanoma cell lines frequently express ITK, YES1, and EGFR. Ibrutinib suppressed cell motility and proliferation in most cell lines. Eighteen patients (13 male; median age 63.5 years, range 37-82; 12 with ipilimumab resistance) were enrolled. The most frequent side effects were fatigue (61%), anorexia (50%), hyponatremia (28%), nausea, and vomiting (22% each). No antitumor responses were seen. At a median follow-up of 6 months (0.3-35.8 months), the median progression-free survival was 1.3 months (range 0.2-5.5 months). Fifteen patients were discontinued from the study due to progression, and 14 patients had died from metastatic melanoma. All archived tumors expressed ITK, 41% had no expression of p16 and PTEN, and 61% had absent tumor-infiltrating lymphocytes (TILs). Ibrutinib significantly suppressed proliferating (Ki67+) CD19+ peripheral blood mononuclear cells and had no significant effect on other lymphocyte subsets. CONCLUSION: Ibrutinib did not induce any meaningful clinical benefit. ITK expression may not be clinically relevant. Treatment-refractory metastatic melanomas have other fundamental defects (i.e. absent PTEN and p16 expression, absent TILs) that may contribute to an adverse prognosis.
Assuntos
Adenina/análogos & derivados , Interleucina-2/metabolismo , Melanoma/tratamento farmacológico , Piperidinas/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Adenina/farmacologia , Adenina/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/farmacologia , Melanoma Maligno CutâneoRESUMO
Oncogenic RAS is a critical driver for the initiation and progression of several types of cancers. However, effective therapeutic strategies by targeting RAS, in particular RASG12D and RASG12V, and associated downstream pathways have been so far unsuccessful. Treatment of oncogenic RAS-ravaged cancer patients remains a currently unmet clinical need. Consistent with a major role in cancer metabolism, oncogenic RAS activation elevates both reactive oxygen species (ROS)-generating NADPH oxidase (NOX) activity and ROS-scavenging glutathione biosynthesis. At a certain threshold, the heightened oxidative stress and antioxidant capability achieve a higher level of redox balance, on which cancer cells depend to gain a selective advantage on survival and proliferation. However, this prominent metabolic feature may irrevocably render cancer cells vulnerable to concurrent inhibition of both NOX activity and glutathione biosynthesis, which may be exploited as a novel therapeutic strategy. In this report, we test this hypothesis by treating the HRASG12V-transformed ovarian epithelial cells, mutant KRAS-harboring pancreatic and colon cancer cells of mouse and human origins, as well as cancer xenografts, with diphenyleneiodonium (DPI) and buthionine sulfoximine (BSO) combination, which inhibit NOX activity and glutathione biosynthesis, respectively. Our results demonstrate that concomitant targeting of NOX and glutathione biosynthesis induces a highly potent lethality to cancer cells harboring oncogenic RAS. Therefore, our studies provide a novel strategy against RAS-bearing cancers that warrants further mechanistic and translational investigation.
Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Genes ras , Glutationa/biossíntese , Metionina/análogos & derivados , Mutação , NADPH Oxidases/antagonistas & inibidores , Oniocompostos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Sulfóxidos/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Morte Celular/efeitos dos fármacos , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Genes p53 , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutamato-Cisteína Ligase/metabolismo , Células HCT116 , Humanos , Metionina/farmacologia , Camundongos Nus , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Estresse Oxidativo , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Because the peroxisome proliferator-activated receptor (PPAR) signaling pathway is involved in development and progression of pancreatic cancer, we investigated associations between genetic variants of the PPAR pathway genes and pancreatic cancer risk by using three published genome-wide association study datasets including 8477 cases and 6946 controls of European ancestry. Expression quantitative trait loci (eQTL) analysis was also performed for correlations between genotypes of the identified genetic variants and messenger RNA (mRNA) expression levels of their genes by using available databases of the 1000 Genomes, TCGA, and GTEx projects. In the single-locus logistic regression analysis, we identified 1141 out of 17 532 significant single-nucleotide polymorphisms (SNPs) in 112 PPAR pathway genes. Further multivariate logistic regression analysis identified three independent, potentially functional loci (rs12947620 in MED1, rs11079651 in PRKCA, and rs34367566 in PRKCB) for pancreatic cancer risk (odds ratio [OR] = 1.11, 95% confidence interval [CI], [1.06-1.17], P = 5.46 × 10-5 ; OR = 1.10, 95% CI, [1.04-1.15], P = 1.99 × 10-4 ; and OR = 1.09, 95% CI, [1.04-1.14], P = 3.16 × 10-4 , respectively) among 65 SNPs that passed multiple comparison correction by false discovery rate (< 0.2). When risk genotypes of these three SNPs were combined, carriers with 2 to 3 unfavorable genotypes (NUGs) had a higher risk of pancreatic cancer than those with 0 to 1 NUGs. The eQTL analysis showed that rs34367566 A>AG was associated with decreased expression levels of PRKCB mRNA in 373 lymphoblastoid cell lines. Our findings indicate that genetic variants of the PPAR pathway genes, particularly MED1, PRKCA, and PRKCB, may contribute to susceptibility to pancreatic cancer.
Assuntos
Biomarcadores Tumorais/genética , Subunidade 1 do Complexo Mediador/genética , Neoplasias Pancreáticas/patologia , Receptores Ativados por Proliferador de Peroxissomo/genética , Polimorfismo de Nucleotídeo Único , Proteína Quinase C beta/genética , Proteína Quinase C-alfa/genética , Idoso , Estudos de Casos e Controles , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Prognóstico , Locos de Características Quantitativas , Taxa de SobrevidaRESUMO
BACKGROUND: Adjuvant chemotherapy (AC) is associated with improved survival following resection of pancreatic adenocarcinoma but is frequently delayed or deferred due to perioperative complications or patient deconditioning. The aim of this study was to assess impact of delayed AC on overall survival after pancreaticoduodenectomy for pancreatic head adenocarcinoma. METHODS: Patients with stage I-III pancreatic head adenocarcinoma in the 2006-2015 National Cancer Database were grouped by timing of AC (<6-weeks, 6-12-weeks, and 12-24-weeks). Overall survival was compared using Cox proportional hazard models adjusting for patient, tumor, and hospital factors. Subgroup analyses were conducted to assess the impact of comorbidities, readmission or extended hospital stay, and receipt of single- versus multi-agent chemotherapy. RESULTS: Of 13438 patients, 4552 (33.9%) received no AC, 2112 (15.7%) received AC <6-weeks following resection, 5580 (41.5%) within 6-12 weeks, and 1194 (8.9%) within 12-24 weeks. AC was associated with improved overall survival (adjusted hazard ratio [HR] <6-weeks: 0.765, 6-12-weeks: 0.744, and 12-24-weeks: 0.736 (p < 0.001)). This survival advantage persisted for patients with comorbidities, those with postoperative complications, and in those receiving single- or multi-agent regimens. CONCLUSIONS: For patients with stage I-III pancreatic adenocarcinoma, receipt of AC is associated with improved overall survival, even if delayed up to 24-weeks.
Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Quimioterapia Adjuvante , Humanos , Estadiamento de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/cirurgia , Pancreaticoduodenectomia/efeitos adversosRESUMO
BACKGROUND & AIMS: Obesity is a risk factor for pancreatic cancer. In mice, a high-fat diet (HFD) and expression of oncogenic KRAS lead to development of invasive pancreatic ductal adenocarcinoma (PDAC) by unknown mechanisms. We investigated how oncogenic KRAS regulates the expression of fibroblast growth factor 21, FGF21, a metabolic regulator that prevents obesity, and the effects of recombinant human FGF21 (rhFGF21) on pancreatic tumorigenesis. METHODS: We performed immunohistochemical analyses of FGF21 levels in human pancreatic tissue arrays, comprising 59 PDAC specimens and 45 nontumor tissues. We also studied mice with tamoxifen-inducible expression of oncogenic KRAS in acinar cells (KrasG12D/+ mice) and fElasCreERT mice (controls). KrasG12D/+ mice were placed on an HFD or regular chow diet (control) and given injections of rhFGF21 or vehicle; pancreata were collected and analyzed by histology, immunoblots, quantitative polymerase chain reaction, and immunohistochemistry. We measured markers of inflammation in the pancreas, liver, and adipose tissue. Activity of RAS was measured based on the amount of bound guanosine triphosphate. RESULTS: Pancreatic tissues of mice expressed high levels of FGF21 compared with liver tissues. FGF21 and its receptor proteins were expressed by acinar cells. Acinar cells that expressed KrasG12D/+ had significantly lower expression of Fgf21 messenger RNA compared with acinar cells from control mice, partly due to down-regulation of PPARG expression-a transcription factor that activates Fgf21 transcription. Pancreata from KrasG12D/+ mice on a control diet and given injections of rhFGF21 had reduced pancreatic inflammation, infiltration by immune cells, and acinar-to-ductal metaplasia compared with mice given injections of vehicle. HFD-fed KrasG12D/+ mice given injections of vehicle accumulated abdominal fat, developed extensive inflammation, pancreatic cysts, and high-grade pancreatic intraepithelial neoplasias (PanINs); half the mice developed PDAC with liver metastases. HFD-fed KrasG12D/+ mice given injections of rhFGF21 had reduced accumulation of abdominal fat and pancreatic triglycerides, fewer pancreatic cysts, reduced systemic and pancreatic markers of inflammation, fewer PanINs, and longer survival-only approximately 12% of the mice developed PDACs, and none of the mice had metastases. Pancreata from HFD-fed KrasG12D/+ mice given injections of rhFGF21 had lower levels of active RAS than from mice given vehicle. CONCLUSIONS: Normal acinar cells from mice and humans express high levels of FGF21. In mice, acinar expression of oncogenic KRAS significantly reduces FGF21 expression. When these mice are placed on an HFD, they develop extensive inflammation, pancreatic cysts, PanINs, and PDACs, which are reduced by injection of FGF21. FGF21 also reduces the guanosine triphosphate binding capacity of RAS. FGF21 might be used in the prevention or treatment of pancreatic cancer.
Assuntos
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/metabolismo , Dieta Hiperlipídica , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Intraductais Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/prevenção & controle , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo , Fatores de Crescimento de Fibroblastos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Klotho , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Mutação , PPAR gama/genética , PPAR gama/metabolismo , Cisto Pancreático/genética , Cisto Pancreático/metabolismo , Cisto Pancreático/patologia , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Intraductais Pancreáticas/prevenção & controle , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) pathway has been identified as a new target for cancer therapy, because it controls the glucose and lipid metabolism in response to alterations in nutrients and intracellular energy levels. In the present study, we aimed to identify genetic variants of the LKB1-AMPK pathway genes and their associations with pancreatic cancer (PanC) risk using 15 418 participants of European ancestry from two previously published PanC genome-wide association studies. We found that six novel tagging single-nucleotide polymorphisms (SNPs) (i.e, MAP2 rs35075084 T > deletion, PRKAG2 rs2727572 C > T and rs34852782 A > deletion, TP53 rs9895829 A > G, and RPTOR rs62068300 G > A and rs3751936 G > C) were significantly associated with an increased PanC risk. The multivariate logistic regression model incorporating the number of unfavorable genotypes (NUGs) with adjustment for age and sex showed that carriers with five to six NUGs had an increased PanC risk (odds ratio = 1.24, 95% confidence interval = 1.16-1.32 and P < 0.0001), compared to those with zero to four NUGs. Subsequent expression quantitative trait loci (eQTL) analysis further revealed that these SNPs were associated with significantly altered mRNA expression levels either in 373 normal lymphoblastoid cell lines (TP53 SNP rs9895829, P < 0.05) or in whole blood cells of 369 normal donors from the genotype-tissue expression project (GTEx) database [RPTOR SNP rs60268947 and rs28434589, both in high linkage disequilibrium (r2 > 0.9) withRPTOR rs62068300, P < 0.001]. Collectively, our findings suggest that these novel SNPs in the LKB1-AMPK pathway genes may modify susceptibility to PanC, possibly by influencing gene expression.
Assuntos
Proteínas Quinases Ativadas por AMP/genética , Predisposição Genética para Doença/genética , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Idoso , Carcinogênese/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Pâncreas/patologia , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/metabolismo , Locos de Características Quantitativas/genética , Proteína Regulatória Associada a mTOR/genética , Risco , Proteína Supressora de Tumor p53/genéticaRESUMO
Pancreatic cancer (PanC) is one of the most lethal solid malignancies, and metastatic PanC is often present at the time of diagnosis. Although several high- and low-penetrance genes have been implicated in PanC, their roles in carcinogenesis remain only partially elucidated. Because the nuclear factor erythroid2-related factor2 (NRF2) signaling pathway is involved in human cancers, we hypothesize that genetic variants in NRF2 pathway genes are associated with PanC risk. To test this hypothesis, we assessed associations between 31 583 common single nucleotide polymorphisms (SNP) in 164 NRF2-related genes and PanC risk using three published genome-wide association study (GWAS) datasets, which included 8474 cases and 6944 controls of European descent. We also carried out expression quantitative trait loci (eQTL) analysis to assess the genotype-phenotype correlation of the identified significant SNP using publicly available data in the 1000 Genomes Project. We found that three novel SNP (ie, rs3124761, rs17458086 and rs1630747) were significantly associated with PanC risk (P = 5.17 × 10-7 , 5.61 × 10-4 and 5.52 × 10-4 , respectively). Combined analysis using the number of unfavorable genotypes (NUG) of these three SNP suggested that carriers of two to three NUG had an increased risk of PanC (P < 0.0001), compared with those carrying zero to one NUG. Furthermore, eQTL analysis showed that both rs3124761 T and rs17458086 C alleles were associated with increased mRNA expression levels of SLC2A6 and SLC2A13, respectively (P < 0.05). In conclusion, genetic variants in NRF2 pathway genes could play a role in susceptibility to PanC, and further functional exploration of the underlying molecular mechanisms is warranted.
Assuntos
Predisposição Genética para Doença/genética , Fator 2 Relacionado a NF-E2/genética , Neoplasias Pancreáticas/genética , Polimorfismo de Nucleotídeo Único , Transdução de Sinais/genética , Alelos , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Locos de Características Quantitativas/genética , Fatores de RiscoRESUMO
Oncogenic KRAS plays a vital role in controlling tumor metabolism by enhancing aerobic glycolysis. Obesity driven by chronic consumption of high-fat diet (HFD) is a major risk factor for oncogenic KRAS-mediated pancreatic ductal adenocarcinoma (PDAC). However, the role of HFD in KRAS-mediated metabolic reprogramming has been obscure. Here, by using genetically engineered mouse models expressing an endogenous level of KRASG12D in pancreatic acinar cells, we demonstrate that hyperactivation of KRASG12D by obesogenic HFD, as compared to carbohydrate-rich diet, is responsible for enhanced aerobic glycolysis that associates with critical pathogenic responses in the path towards PDAC. Ablation of Cox-2 attenuates KRAS hyperactivation leading to the reversal of both aggravated aerobic glycolysis and high-grade dysplasia under HFD challenge. Our data highlight a pivotal role of the cooperative interaction between obesity-ensuing HFD and oncogenic KRAS in driving the heightened aerobic glycolysis during pancreatic tumorigenesis and suggest that in addition to directly targeting KRAS and aerobic glycolysis pathway, strategies to target the upstream of KRAS hyperactivation may bear important therapeutic value.
Assuntos
Dieta Hiperlipídica , Glicólise , Obesidade/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Aerobiose , Animais , Ciclo-Oxigenase 2/metabolismo , Carboidratos da Dieta , Camundongos , Modelos Biológicos , Obesidade/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias PancreáticasRESUMO
Pancreatic cancer is a highly lethal disease and is projected to become the second leading cause of cancer-related death by 2020. Among the different subtypes, pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. The genetic landscape of PDAC shows nearly ubiquitous mutations of KRAS. However, expression of KRAS somatic mutants alone is insufficient to drive PDAC. Redox deregulation may contribute significantly to KRAS-mediated PDAC. Thus, measurement of cellular reactive oxygen species (ROS) levels is essential to determine how oxidative stress affects mutant KRAS and modulates intracellular signaling pathways leading to the change of cellular functions and the development of PDAC. Here we describe the protocol for comparative measurement of several key forms of ROS, including intracellular and mitochondrial levels of superoxide as well as extracellular H2O2 and general cellular ROS, with oxidation-sensitive fluorescent probes using flow cytometry in pancreatic cancer cells or mutant KRAS transformed cells.
Assuntos
Carcinoma Ductal Pancreático/patologia , Citometria de Fluxo/métodos , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/análise , Carcinoma Ductal Pancreático/genética , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Citometria de Fluxo/instrumentação , Corantes Fluorescentes/química , Humanos , Mitocôndrias/patologia , Mutação , Estresse Oxidativo/genética , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genéticaRESUMO
A workshop on "The Interface of Pancreatic Cancer with Diabetes, Obesity, and Inflammation: Research Gaps and Opportunities" was held by the National Institute of Diabetes and Digestive and Kidney Diseases on October 12, 2017. The purpose of the workshop was to explore the relationship and possible mechanisms of the increased risk of pancreatic ductal adenocarcinoma (PDAC) related to diabetes, the role of altered intracellular energy metabolism in PDAC, the mechanisms and biomarkers of diabetes caused by PDAC, the mechanisms of the increased risk of PDAC associated with obesity, and the role of inflammatory events and mediators as contributing causes of the development of PDAC. Workshop faculty reviewed the state of the current knowledge in these areas and made recommendations for future research efforts. Further knowledge is needed to elucidate the basic mechanisms contributing to the role of hyperinsulinemia, hyperglycemia, adipokines, and acute and chronic inflammatory events on the development of PDAC.
Assuntos
Carcinoma Ductal Pancreático/patologia , Diabetes Mellitus/patologia , Inflamação/patologia , Obesidade/patologia , Neoplasias Pancreáticas/patologia , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Carcinoma Ductal Pancreático/epidemiologia , Carcinoma Ductal Pancreático/metabolismo , Comorbidade , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Metabolismo Energético , Humanos , Inflamação/epidemiologia , Inflamação/metabolismo , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Obesidade/epidemiologia , Obesidade/metabolismo , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/metabolismo , Fatores de Risco , Estados Unidos/epidemiologiaRESUMO
OBJECTIVES: Evaluate toxicity of two treatment arms, A (cetuximab) and B (bevacizumab), when combined with gemcitabine, and chemoradiation in patients with completely resected pancreatic carcinoma. Secondary objectives included overall survival (OS) and disease-free survival (DFS). METHODS: Patients with R0/R1 resection were randomized 1:1 to cetuximab or bevacizumab administered in combination with gemcitabine for two treatment cycles. Next three cycles included concurrent cetuximab/bevacizumab plus chemoradiation, followed by one cycle of cetuximab/bevacizumab. Cycles 7-12 included cetuximab/bevacizumab with gemcitabine. Cycles were 2 weeks. Frequency of specific toxicities was summarized for each treatment arm at two times during the study, after chemotherapy but prior to chemoradiation and after all therapy. RESULTS: A total of 127 patients were randomized (A, n = 65; B, n = 62). Prior to chemoradiation, the overall rate for toxicities of interest was 10% for arm A and 2% for arm B. After all therapy, the overall rates for toxicities of interest were 30 and 25% for arms A and B, respectively. Overall median OS and DFS were 17 and 11 months, respectively, which is not a significant improvement over expected survival rates for historical controls. CONCLUSIONS: Both treatments were tolerable with manageable toxicities, and were safe enough for a phase III trial had this been indicated.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Bevacizumab/administração & dosagem , Cetuximab/administração & dosagem , Quimiorradioterapia/métodos , Terapia Combinada , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gencitabina , Neoplasias PancreáticasRESUMO
The relationships between diabetes and pancreatic ductal adenocarcinoma (PDAC) are complex. Longstanding type 2 diabetes (T2DM) is a risk factor for pancreatic cancer, but increasing epidemiological data point to PDAC as also a cause of diabetes due to unknown mechanisms. New-onset diabetes is of particular interest to the oncology community as the differentiation of new-onset diabetes caused by PDAC as distinct from T2DM may allow for earlier diagnosis of PDAC. To address these relationships and raise awareness of the relationships between PDAC and diabetes, a symposium entitled Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer was held at the American Diabetes Association's 76th Scientific Sessions in June 2016. This article summarizes the data presented at that symposium, describing the current understanding of the interrelationships between diabetes, diabetes management, and pancreatic cancer, and identifies areas where additional research is needed.
Assuntos
Carcinoma Ductal Pancreático/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Obesidade/epidemiologia , Neoplasias Pancreáticas/epidemiologia , Pancreatite Crônica/epidemiologia , Glicemia/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Causalidade , Diabetes Mellitus/classificação , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/etiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Humanos , Hipoglicemiantes/uso terapêutico , Inflamação , Obesidade/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Pancreatite Crônica/complicações , Pancreatite Crônica/genética , Pancreatite Crônica/imunologia , Fatores de RiscoRESUMO
Background: CA19-9, which is currently in clinical use as a pancreatic ductal adenocarcinoma (PDAC) biomarker, has limited performance in detecting early-stage disease. We and others have identified protein biomarker candidates that have the potential to complement CA19-9. We have carried out sequential validations starting with 17 protein biomarker candidates to determine which markers and marker combination would improve detection of early-stage disease compared with CA19-9 alone. Methods: Candidate biomarkers were subjected to enzyme-linked immunosorbent assay based sequential validation using independent multiple sample cohorts consisting of PDAC cases (n = 187), benign pancreatic disease (n = 93), and healthy controls (n = 169). A biomarker panel for early-stage PDAC was developed based on a logistic regression model. All statistical tests for the results presented below were one-sided. Results: Six out of the 17 biomarker candidates and CA19-9 were validated in a sample set consisting of 75 PDAC patients, 27 healthy subjects, and 19 chronic pancreatitis patients. A second independent set of 73 early-stage PDAC patients, 60 healthy subjects, and 74 benign pancreatic disease patients (combined validation set) yielded a model that consisted of TIMP1, LRG1, and CA19-9. Additional blinded testing of the model was done using an independent set of plasma samples from 39 resectable PDAC patients and 82 matched healthy subjects (test set). The model yielded areas under the curve (AUCs) of 0.949 (95% confidence interval [CI] = 0.917 to 0.981) and 0.887 (95% CI = 0.817 to 0.957) with sensitivities of 0.849 and 0.667 at 95% specificity in discriminating early-stage PDAC vs healthy subjects in the combined validation and test sets, respectively. The performance of the biomarker panel was statistically significantly improved compared with CA19-9 alone (P < .001, combined validation set; P = .008, test set). Conclusion: The addition of TIMP1 and LRG1 immunoassays to CA19-9 statistically significantly improves the detection of early-stage PDAC.