Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10548, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719844

RESUMO

This study not only provides an innovative technique for producing rigid polyurethane foam (RPUF) composites, but it also offers a way to reuse metallurgical solid waste. Rigid polyurethane (RPUF) composite samples have been prepared with different proportions of iron slag as additives, with a range of 0-25% mass by weight. The process of grinding iron slag microparticles into iron slag nanoparticles powder was accomplished with the use of a high-energy ball mill. The synthesized samples have been characterized using Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscope. Then, their radiation shielding properties were measured by using A hyper-pure germanium detector using point sources 241Am, 133 BA, 152 EU, 137Cs, and 60Co, with an energy range of 0.059-1.408 MeV. Then using Fluka simulation code to validate the results in the energy range of photon energies of 0.0001-100 MeV. The linear attenuation coefficient, mass attenuation coefficient, mean free path, half-value layer and tenth-value layer, were calculated to determine the radiation shielding characteristics of the composite samples. The calculated values are in good agreement with the calculated values. The results of this study showed that the gamma-ray and neutron attenuation parameters of the studied polyurethane composite samples have improved. Moreover, the effect of iron slag not only increases the gamma-ray attenuation shielding properties but also enhances compressive strength and the thermal stability. Which encourages us to use polyurethane iron-slag composite foam in sandwich panel manufacturing as walls to provide protection from radiation and also heat insulation.

2.
Heliyon ; 10(4): e25907, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390160

RESUMO

Seismic attributes can play an important role in the exploration of hydrocarbon-bearing stratigraphic systems. Incised valley systems are developed during the falling sea, which causes the deposition of coarse-grained sandstone facies inside the low-standing tracts (LST). These regional phenomena constrain the quantitative attributes of ultra-thin-bedded stratigraphic petroleum traps, e.g., vertical and lateral variations in the thickness, accommodation space, lithology, and porosity. This study deals with the application of the continuous wavelet transform (CWT) of a spectral decomposition (SD) tool on a 3D post-stack seismic volume of the Miano gas Field, Lower Indus basin, Pakistan. The results show that the CWT accurately detected the regionally faulted/fractured system and distinguished the frequency-dependent amplitude anomalies. The wedge model resolved a 24-meter-thick gas-bearing resource. Quality control analysis was carried out using CWT-based broadband processing between the designed amplitude spectrum of 17 Hz and 70 Hz. The reservoirs with over 25% porosity that were located within the shale-dominated facies with less than 8% porosity were imaged through the processing of the instantaneous spectral porosity model at the 48-Hz tuning block. Moreover, 190 to 165-m-thick thin-bedded sandstone reservoirs at a 25% porosity zone were resolved using 22-Hz and 28-Hz, which implicates the sea standstill and medium-to-coarse-grained depositional reservoir facies. The ultra-thin-bedded traps inside the laterally continuous stratigraphic lens of 121 m and the prograding clinoform lens of 101-m within the incised valley petroleum system were resolved using 48-Hz, which implicates the falling sea and fine-scaled transgressed erosional facies. These implications suggest that the identified regional stratigraphic traps have development potential for this gas field. The treatment of the inverted model at the highest frequencies can be utilized to investigate the porous stratigraphically trapped facies of LST and can serve as an important analogue for the leading gas field of the Indus Basin and similar basins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA