Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 973: 176568, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604544

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) has the worst prognosis among breast cancer subtypes. It is characterized by lack of estrogen, progesterone and human epidermal growth factor 2 receptors, and thus, have limited therapeutic options. Autophagy has been found to be correlated with poor prognosis and aggressive behaviour in TNBC. This study aimed to target autophagy in TNBC via a novel approach to inhibit TNBC progression. METHODS: Immunoblotting and confocal microscopy were carried out to examine the effect of tumor microenvironmental stressors on autophagy. Cellular proliferation and migration assays were used to test the effect of different autophagy inhibitors and standard chemotherapy alone or in combination. In vivo xenograft mouse model was utilized to assess the effect of autophagy inhibitors alone or in combination with Paclitaxel. High resolution mass spectrometry based proteomic analysis was performed to explore the mechanisms behind chemoresistance in TNBC. Lastly, immunohistochemistry was done to assess the correlation between autophagy related proteins and clinical characteristics in TNBC tissue specimens. RESULTS: Metabolic stressors were found to induce autophagy in TNBC cell lines. Autophagy initiation inhibitors, SAR405 and MRT68921, showed marked synergy in their anti-proliferative activity in both chemosensitive and chemoresistant TNBC cell models. Paradoxically, positive expression of autophagosome marker LC3 was shown to be associated with better overall survival of TNBC patients. CONCLUSION: In this study, a novel combination between different autophagy inhibitors was identified which inhibited tumor cell proliferation in both chemosensitive and chemoresistant TNBC cells and could result in development of a novel treatment modality against TNBC.


Assuntos
Autofagia , Proliferação de Células , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Autofagia/efeitos dos fármacos , Humanos , Animais , Linhagem Celular Tumoral , Feminino , Proliferação de Células/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Movimento Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119627, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37963518

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most common forms of oral cancer and is known to have poor prognostic outcomes. Autophagy is known to be associated with aggressive tumor biology of OSCC. Hence, this study aimed to develop a novel therapeutic strategy against OSCC by targeting the autophagic pathway. METHODS: Immunoblotting, and confocal microscopy were used to examine the effect of tumor microenvironmental stressors on the autophagy activity. Cellular proliferation and migration assays were performed to assess the anti-cancer activity of standard chemotherapy and autophagy initiation inhibitors, either alone or in combination. High resolution mass-spectrometry based proteomic analysis was utilized to understand the mechanisms behind chemoresistance in OSCC models. Finally, immunohistochemistry was performed to determine associations between autophagy markers and clinicopathological characteristics. RESULTS: Tumor microenvironmental stressors were shown to induce autophagy activity in OSCC cell lines. Novel combinations of chemotherapy and autophagy inhibitors as well as different classes of autophagy inhibitors were identified. Combination of MRT68921 and SAR405 demonstrated marked synergy in their anti-proliferative activity and also showed synergy with chemotherapy in chemoresistant OSCC cell models. Autophagy was identified as one of the key pathways involved in mediating chemoresistance in OSCC. Furthermore, TGM2 was identified as a key upstream regulator of chemoresistance in OSCC models. Finally, positive staining for autophagosome marker LC3 was shown to be associated with low histological grade OSCC. CONCLUSION: In conclusion, this study identified a combination of novel autophagy inhibitors which can potently inhibit proliferation of both chemosensitive as well as chemoresistant OSCC cells and could be developed as a novel therapy against advanced OSCC tumors.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Proteômica , Neoplasias Bucais/metabolismo , Linhagem Celular Tumoral , Autofagia
3.
Cancers (Basel) ; 14(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884592

RESUMO

Pancreatic cancer is known to have the lowest survival outcomes among all major cancers, and unfortunately, this has only been marginally improved over last four decades. The innate characteristics of pancreatic cancer include an aggressive and fast-growing nature from powerful driver mutations, a highly defensive tumor microenvironment and the upregulation of advantageous survival pathways such as autophagy. Autophagy involves targeted degradation of proteins and organelles to provide a secondary source of cellular supplies to maintain cell growth. Elevated autophagic activity in pancreatic cancer is recognized as a major survival pathway as it provides a plethora of support for tumors by supplying vital resources, maintaining tumour survival under the stressful microenvironment and promoting other pathways involved in tumour progression and metastasis. The combination of these features is unique to pancreatic cancer and present significant resistance to chemotherapeutic strategies, thus, indicating a need for further investigation into therapies targeting this crucial pathway. This review will outline the autophagy pathway and its regulation, in addition to the genetic landscape and tumor microenvironment that contribute to pancreatic cancer severity. Moreover, this review will also discuss the mechanisms of novel therapeutic strategies that inhibit autophagy and how they could be used to suppress tumor progression.

4.
Pharmacol Res ; 175: 106006, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843961

RESUMO

Triple negative breast cancer (TNBC) is the most aggressive type of breast cancers which constitutes about 15% of all breast cancer cases and characterized by negative expression of hormonal receptors and human epidermal growth factor receptor 2 (HER2). Thus, endocrine and HER2 targeted therapies are not effective toward TNBCs, and they mainly rely on chemotherapy and surgery for treatment. Despite recent advances in chemotherapy, 40% of TNBC patients develop a metastatic relapse and recurrence. Therefore, understanding the molecular profile of TNBC is warranted to identify targets that can be selected for the development of a new and effective therapeutic approach. Autophagy is an internal defensive mechanism that allows the cells to survive under different stressors. It has been well known that autophagy exerts a crucial role in cancer progression. The critical role of autophagy in TNBC progression is emerging in recent years. This review will discuss autophagic pathway, how autophagy affects TNBC progression and recent therapeutic approaches that can target autophagy as a new treatment modality.


Assuntos
Autofagia , Neoplasias de Mama Triplo Negativas , Animais , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
Cancers (Basel) ; 13(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34944772

RESUMO

Autophagy is a cellular catabolic process, which is characterized by degradation of damaged proteins and organelles needed to supply the cell with essential nutrients. At basal levels, autophagy is important to maintain cellular homeostasis and development. It is also a stress responsive process that allows the cells to survive when subjected to stressful conditions such as nutrient deprivation. Autophagy has been implicated in many pathologies including cancer. It is well established that autophagy plays a dual role in different cancer types. There is emerging role of autophagy in oral squamous cell carcinoma (OSCC) development and progression. This review will focus on the role played by autophagy in relation to different aspects of cancer progression and discuss recent studies exploring the role of autophagy in OSCC. It will further discuss potential therapeutic approaches to target autophagy in OSCC.

6.
Biosci Rep ; 41(2)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33543229

RESUMO

Triple-negative breast cancer (TNBC) is a group of breast cancers which neither express hormonal receptors nor human epidermal growth factor receptor. Hence, there is a lack of currently known targeted therapies and the only available line of systemic treatment option is chemotherapy or more recently immune therapy. However, in patients with relapsed disease after adjuvant or neoadjuvant therapy, resistance to chemotherapeutic agents has often developed, which results in poor treatment response. Multidrug resistance (MDR) has emerged as an important mechanism by which TNBCs mediate drug resistance and occurs primarily due to overexpression of ATP-binding cassette (ABC) transporter proteins such as P-glycoprotein (Pgp). Pgp overexpression had been linked to poor outcome, reduced survival rates and chemoresistance in patients. The aim of this mini-review is to provide a topical overview of the recent studies and to generate further interest in this critical research area, with the aim to develop an effective and safe approach for overcoming Pgp-mediated chemoresistance in TNBC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Humanos , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA