Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 190: 106068, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421706

RESUMO

Aquatic pollution negatively affects water bodies, marine ecosystems, public health, and economy. Restoration of contaminated habitats has attracted global interest since protecting the health of marine ecosystems is crucial. Bioremediation is a cost-effective and eco-friendly way of transforming hazardous, resistant contaminants into environmentally benign products using diverse biological treatments. Because of their robust morphology and broad metabolic capabilities, fungi play an important role in bioremediation. This review summarizes the features employed by aquatic fungi for detoxification and subsequent bioremediation of different toxic and recalcitrant compounds in aquatic ecosystems. It also details how mycoremediation may convert chemically-suspended matters, microbial, nutritional, and oxygen-depleting aquatic contaminants into ecologically less hazardous products using multiple modes of action. Mycoremediation can also be considered in future research studies on aquatic, including marine, ecosystems as a possible tool for sustainable management, providing a foundation for selecting and utilizing fungi either independently or in microbial consortia.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Ecossistema , Fungos/metabolismo
2.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770871

RESUMO

Phenols are very soluble in water; as a result, they can pollute a massive volume of fresh water, wastewater, groundwater, oceans, and soil, negatively affecting plant germination and animal and human health. For the detoxification and bioremediation of phenol in wastewater, phenol biodegradation using novel bacteria isolated from sewage sludge was investigated. Twenty samples from sewage sludge (SS) were collected, and bacteria in SS contents were cultured in the mineral salt agar (MSA) containing phenol (500 mg/L). Twenty colonies (S1 up to S20) were recovered from all the tested SS samples. The characteristics of three bacterial properties, 16S rDNA sequencing, similarities, GenBank accession number, and phylogenetic analysis showed that strains S3, S10, and S18 were Pseudomonas aeruginosa, Klebsiella pneumoniae, and Klebsiella variicola, respectively. P. aeruginosa, K. pneumoniae, and K. variicola were able to degrade 1000 mg/L phenol in the mineral salt medium. The bacterial strains from sewage sludge were efficient in removing 71.70 and 74.67% of phenol at 1000 mg/L within three days and could tolerate high phenol concentrations (2000 mg/L). The findings showed that P. aeruginosa, K. pneumoniae, and K. variicola could potentially treat phenolic water. All soybean and faba bean seeds were germinated after being treated with 250, 500, 750, and 1000 mg/L phenol in a mineral salt medium inoculated with these strains. The highest maximum phenol removal and detoxification rates were P. aeruginosa and K. variicola. These strains may help decompose and detoxify phenol from industrial wastewater with high phenol levels and bioremediating phenol-contaminated soils.


Assuntos
Fenol , Esgotos , Humanos , Esgotos/microbiologia , Fenol/metabolismo , Pseudomonas aeruginosa/metabolismo , Águas Residuárias , Glycine max/metabolismo , Biodegradação Ambiental , Filogenia , Fenóis/metabolismo , Bactérias/metabolismo , Klebsiella pneumoniae/metabolismo , Sementes/metabolismo , Minerais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA