Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol ; 329: 110211, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38772086

RESUMO

Ticks, particularly Rhipicephalus annulatus, pose significant threats to livestock, causing economic losses and transmitting various infectious diseases. This study aimed to evaluate the potential acaricidal properties of garlic oil and its nanoemulsion against ticks infesting cattle, Rhipicephalus annulatus through the evaluation of mortality rate and morphological changes of the treated ticks. The study also included prevalence, risk factors, and molecular confirmation of tick species. Genetic characterization confirmed the identity of R. annulatus. Our results revealed a high prevalence of R. annulatus (46.9%) with a higher risk in male cattle (50%) than females (44.9%) and a nonsignificant high infection (49.1%) in animals ≤ 1 year old. The acaricidal efficiency of garlic oil and its nanoemulsion was concentration and time-dependent. The high concentration of garlic oil (20 mg/L) induced complete mortality within 48 hours. The nanoemulsion formulation enhanced efficacy, particularly at 5 mg/L, which exhibited rapid and substantial acaricidal activity. Scanning electron microscopy revealed morphological alterations induced by garlic oil and its nanoemulsion, including changes to the anterior capitulum, dorsal, and ventral cuticles. The study contributes to the exploration of effective, safe, and eco-friendly alternatives for tick control. Further research is warranted to validate their efficacy under diverse conditions and assess practical strategies.

2.
BMC Complement Med Ther ; 24(1): 183, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704537

RESUMO

BACKGROUND: Highlighting affordable alternative crops that are rich in bioactive phytoconstituents is essential for advancing nutrition and ensuring food security. Amaranthus blitum L. (AB) stands out as one such crop with a traditional history of being used to treat intestinal disorders, roundworm infections, and hemorrhage. This study aimed to evaluate the anthelmintic and hematologic activities across various extracts of AB and investigate the phytoconstituents responsible for these activities. METHODS: In vitro anthelmintic activity against Trichinella spiralis was evaluated in terms of larval viability reduction. The anti-platelet activities were assessed based on the inhibitory effect against induced platelet aggregation. Further, effects on the extrinsic pathway, the intrinsic pathway, and the ultimate common stage of blood coagulation, were monitored through measuring blood coagulation parameters: prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT), respectively. The structures of isolated compounds were elucidated by spectroscopic analysis. RESULTS: Interestingly, a previously undescribed compound (19), N-(cis-p-coumaroyl)-ʟ-tryptophan, was isolated and identified along with 21 known compounds. Significant in vitro larvicidal activities were demonstrated by the investigated AB extracts at 1 mg/mL. Among tested compounds, compound 18 (rutin) displayed the highest larvicidal activity. Moreover, compounds 19 and 20 (N-(trans-p-coumaroyl)-ʟ-tryptophan) induced complete larval death within 48 h. The crude extract exhibited the minimal platelet aggregation of 43.42 ± 11.69%, compared with 76.22 ± 14.34% in the control plasma. Additionally, the crude extract and two compounds 19 and 20 significantly inhibited the extrinsic coagulation pathway. CONCLUSIONS: These findings extend awareness about the nutritional value of AB as a food, with thrombosis-preventing capabilities and introducing a promising source for new anthelmintic and anticoagulant agents.


Assuntos
Amaranthus , Anti-Helmínticos , Anticoagulantes , Compostos Fitoquímicos , Extratos Vegetais , Inibidores da Agregação Plaquetária , Animais , Anti-Helmínticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Anticoagulantes/farmacologia , Larva/efeitos dos fármacos
3.
Microsc Res Tech ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430198

RESUMO

Trichinella spiralis infection is a food-borne zoonotic disease caused by nematodes that dwell in the tissues, presenting a significant public health concern. This study aimed to evaluate the effectiveness of different treatments including silver nanoparticles (AgNPs), myrrh biosynthesized AgNPs "AgNPs synthesized using plant-based green technologies", myrrh extract, and myrrh essential oil, as alternative treatments against T. spiralis infection. Parasitological, histopathological, and cytotoxicity assessments were conducted to investigate the effects of various concentrations of these treatments in reducing the populations of adult worms and larvae during both the intestinal and muscular phases of T. spiralis-infected mice. The results showed that the highest antihelminthic efficacy against the intestinal phase of T. spiralis was achieved by myrrh extract (86.66%), followed closely by AgNPs (84.96%) and myrrh AgNPs (82.51%) at higher concentrations (800 mg/kg for myrrh extract, 40 µg/mL for AgNPs, and 40 µg/mL for myrrh AgNPs). While the group treated with myrrh essential oil showed the lowest percentage of adult reduction (78.14%). However, all treatments demonstrated comparable effects in reducing the larvae population in the muscle phase. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. Additionally, a comprehensive assessment of the cytotoxicity of AgNPs indicated low toxicity levels. This study supports that AgNPs synthesized using plant-based green technologies hold therapeutic potential for the treatment of T. spiralis infection. These findings present a promising avenue for the development of novel antiparasitic drugs that are both effective and safe. RESEARCH HIGHLIGHTS: Myrrh extract has the highest antihelminthic efficacy against the intestinal phase of T. spiralis. Histopathological examination of the tissues revealed compelling evidence of the effectiveness of AgNPs, particularly when prepared with myrrh. During intestinal phase of T. spiralis, varying levels of nanoparticle precipitation were detected in the liver, brain, lung, and intestine. During the muscular phase, the highest amount of AgNPs precipitation was detected in the liver, followed by the brain, and lung.

4.
Microsc Microanal ; 30(2): 368-381, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323506

RESUMO

In our pursuit of an alternative drug against Trichinella spiralis, we assessed the effectiveness of nanocurcumin in alleviating pathogenesis, parasitological factors, MMP-9 levels, and its expression in the enteral and parenteral phases of infection. The nanocurcumin particles, with a spherical shape and a size of 100 ± 20 nm, were used in the study. Eighty mice were divided into four groups: the control group, the untreated infected group, the nanocurcumin-treated group, and the albendazole-treated group. The nanocurcumin-treated group exhibited a statistically significant increase in the percentage of lymphocytes, along with a reduction in neutrophils, monocytes, and eosinophils compared to the untreated, infected group. Both the nanocurcumin (87.2 and 97.3%) and the albendazole-treated groups (99.8 and 98.2%) showed a significant reduction in the mean number of intestinal worms and encysted larvae, respectively. The treated groups exhibited normal intestinal villi, suppression of the inflammatory process, and fewer instances of degenerated larvae in the diaphragm and muscle compared to the untreated, infected group. Immunohistochemistry and ELISA analyses revealed a significant downregulation of MMP-9 levels in the intestines and muscles of the treated groups. Our data demonstrate that nanocurcumin contains highly versatile molecules capable of modulating biological activity against inflammation and its pathway markers.


Assuntos
Curcumina , Metaloproteinase 9 da Matriz , Trichinella spiralis , Triquinelose , Animais , Triquinelose/tratamento farmacológico , Trichinella spiralis/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Curcumina/farmacologia , Modelos Animais de Doenças , Nanopartículas/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
5.
Animals (Basel) ; 13(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36978630

RESUMO

Fish are a source of high-quality protein with low cholesterol, but they are susceptible to parasitic infections, which have a significant impact on aquaculture, in addition to their zoonotic potential. The present study estimated parasitic infections and evaluated the diversity of zoonotic parasites in freshwater Nile tilapia (Oreochromis niloticus) in Assiut Governorate, Upper Egypt. A total of 300 samples were randomly collected from the Assiut Governorate. These fish were examined for both ectoparasites and endoparasites, followed by the experimental infection of mice with encysted metacercariae (EMC) for the retrieval of the adult worms. The overall prevalence of the variable parasites was 82% (246 of 300). Both ecto- and endoparasites were detected in 41% (123 of 300) of the examined fish. The identified ectoparasites were Gyrodactylus, Dactylogrus, Cichlidogyrus, Trichodina and Icthyophthirius multifiliis, in 5%, 4%, 22%, 6% and 4% of the fish, respectively. The endoparasites were trematodes (Orientocreadium batrachoides 3%), nematodes (Contracaecum. 2%), acanthocephala (Acanthosentis tilapiae 25%) and protozoa that included Isospora and Eimeria spp., in 1% and 8% of fish, respectively. Myxobolus was detected in 2% of the examined fish. The overall prevalence of encysted metacercariae (EMC) was 95% (285 of 300), while infection with macroscopic EMC had a prevalence of 37% and microscopic EMC had a prevalence of 58%. The adult worms recovered from the experimental infections were Prohemistomum vivax and Mesostephanus spp., which belong to the family Cyathocotylidae. Collectively, these findings reflect the relatively high occurrence of parasites among the studied fish, confirming the necessity of strict measures to control infection.

6.
Animals (Basel) ; 12(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428412

RESUMO

Avian coccidiosis remains one of the major parasitic diseases that threaten the global poultry industry. Since prevention is superior to treatment, this study focuses on eliminating the infection outside the host. To determine their effect on the viability of Eimeria tenella oocysts in vitro, allicin and alcoholic garlic extract, which are natural, less toxic, and inexpensive products, were compared to KOH 5% (chemical disinfectant) using an in vitro culture system. Three concentrations of allicin (45, 90, and 180 mg/mL) and alcoholic garlic extract (90, 180, and 360 mg/mL, were used. Subsequently, destructive and sporulation-inhibiting effects on Eimeria oocysts were detected using light and electron microscopy. Young chickens were infected with treated sporulated oocysts to determine their effect on infectivity. After 7 days pi, the percentage of excreted oocysts (oocyst shedding) was determined, and the chickens were slaughtered for histopathological examination of the cecal tissues. Under an electron microscope, allicin at a concentration of 180 mg/mL and alcoholic garlic extract at a concentration of 360 mg/mL demonstrate a high oocysticidal activity with severe destruction of the oocyst wall and the appearance of pores. In addition, both concentrations directly affected the infectivity of sporulated oocysts by reducing the shedding of oocysts and the pathological lesions of infected young chickens. We concluded that the ability of Allicin and alcoholic garlic extract to eliminate Eimeria oocysts makes them superior to chemical disinfectants as a disinfectant.

7.
Ann Parasitol ; 67(4): 591-602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35247299

RESUMO

Trichinellosis is a serious worldwide parasitic zoonosis. The available therapy for the treatment of Trichinella spiralis is not satisfactory. Therefore, the recovery of effective treatment is required. This work aimed at evaluating of the in vitro effect of silver nanoparticles (AgNPs) on muscle larvae of Trichinella. The present study investigated the larvicidal properties of chemical and myrrh AgNPs on muscle larvae (ML) of T. spiralis. The used AgNPs were chemically prepared using NaBH4 as reducing agent and biosynthesized using methanolic myrrh extract. Characterization of synthesized AgNPs was monitored via UV-vis spectrophotometry, Fourier transform infrared spectroscopy and transmission electron microscopy (TEM) studies. The ML incubated with AgNPs at concentrations ranged from 1 µg/ml to 20 µg/ml. Chemical and biosynthesized AgNPs revealed marked larvicidal effect against ML of Trichinella. Additionally, this in vitro study showed degenerative changes affecting the cuticle of AgNPs treated ML. The effectiveness of AgNPs on the infectivity of Trichinella ML was also assessed. The results showed complete inhibition of the infectivity of ML exposed to sublethal doses of chemical and myrrh prepared AgNPs when used to infect animal models. This is the first report where myrrh synthesized AgNPs have been tested for their anthelminthic activity against Trichinella in an in vitro model.


Assuntos
Inseticidas , Nanopartículas Metálicas , Trichinella spiralis , Animais , Inseticidas/análise , Inseticidas/química , Inseticidas/farmacologia , Larva , Nanopartículas Metálicas/química , Músculos , Extratos Vegetais/farmacologia , Folhas de Planta , Prata/análise , Prata/química , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA