Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393172

RESUMO

Probiotics and their bacteriocins have increasingly attracted interest for their use as safe food preservatives. This study aimed to produce soft white cheese fortified with Lacticaseibacillus MG847589 (Lb. paracasei MG847589) and/or its bacteriocin; cheese with Lacticaseibacillus (CP), cheese with bacteriocin (CB), and cheese with both Lacticaseibacillus and bacteriocin (CPB) were compared to control cheese (CS) to evaluate their biopreservative and anti-mycotoxigenic potentials for prolonged shelf life and safe food applications. The effects of these fortifications on physiochemical, microbial, texture, microstructure, and sensory properties were studied. Fortification with Lacticaseibacillus (CP) increased acidity (0.61%) and microbial counts, which may make the microstructure porous, while CPB showed intact microstructure. The CPB showed the highest hardness value (3988.03 g), while the lowest was observed with CB (2525.73 g). Consequently, the sensory assessment reflected the panelists' preference for CPB, which gained higher scores than the control (CS). Fortification with Lb. paracasei MG847589 and bacteriocin (CPB) showed inhibition effects against S. aureus from 6.52 log10 CFU/g at time zero to 2.10 log10 CFU/g at the end of storage, A. parasiticus (from 5.06 to 3.03 log10 CFU/g), and P. chrysogenum counts (from 5.11 to 2.86 log10 CFU/g). Additionally, CPB showed an anti-mycotoxigenic effect against aflatoxins AFB1 and AFM1, causing them to be decreased (69.63 ± 0.44% and 71.38 ± 0.75%, respectively). These potentials can extend shelf life and pave the way for more suggested food applications of safe food production by fortification with both Lb. paracasei MG847589 and its bacteriocin as biopreservatives and anti-mycotoxigenic.


Assuntos
Bacteriocinas , Queijo , Lacticaseibacillus paracasei , Lactobacillus , Bacteriocinas/farmacologia , Staphylococcus aureus , Microbiologia de Alimentos
2.
Sci Rep ; 13(1): 11215, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433826

RESUMO

This research aimed to investigate the properties of bio rayeb milk that results from goats fed on feed supplemented with different concentrations of coriander oil. The study design included a control treatment (C) and two coriander oil concentrations, a low level of (0.95%) T1 and a high level of (1.9%) T2. A probiotic starter culture, Direct Vat Set (DVS) of lactobacillus delbrueckii ssp. bulgaricus and streptococcus salivarius ssp. thermophilus in the ratio (1:1) was used to prepare bio rayeb. All treatments were stored at 4 °C for 2 weeks and analyzed on day one and at the end of storage. Results showed that the coagulation time during bio rayeb manufacturing remained consistent at almost 6 h for all batches. However, using a high coriander oil level (1.90%) significantly decreased the apparent viscosity and the content of monounsaturated fatty acids. The DPPH inhibition and the content of monounsaturated fatty acids increased. The electrophoresis chromatogram exhibited a high degree of proteolysis in T2 compared to the control and T1. Microbiologically, yeast, molds, and coliforms were absent in all treatments. Feeding goats on provender supplemented with a low concentration of coriander oil may positively impact the resultant milk's technological and sensorial properties.


Assuntos
Lactobacillus delbrueckii , Óleos Voláteis , Animais , Leite , Cabras , Saccharomyces cerevisiae , Ácidos Graxos Monoinsaturados , Streptococcus thermophilus
3.
Antioxidants (Basel) ; 12(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37372005

RESUMO

(1) Objective: The main objective of the current study was to evaluate in vitro and in vivo an antioxidant property of three genotypes of olive leaf extract (OLE) (picual, tofahi and shemlali), and furthermore to assess potential activity in the treatment and/or prevention of diabetes mellitus type II and related implications. (2) Methodology: Antioxidant activity was determined by using three different methods (DDPH assay, reducing power and nitric acid scavenging activity). In vitro α-glucosidase inhibitory activity and hemolytic protective activity were assessed for the OLE. Five groups of male rats were used in in vivo experiment for evaluating the antidiabetic potential of OLE. (3) Results: The genotypes of the extracts of the three olive leaves exhibited meaningful phenolic and flavonoids content with superiority for picual extract (114.79 ± 4.19 µg GAE/g and 58.69 ± 1.03 µg CE/g, respectively). All three genotypes of olive leaves demonstrated significant antioxidant activity when using DPPH, reducing power and nitric oxide scavenging activity with IC50 ranging from 55.82 ± 0.13 to 19.03 ± 0.13 µg/mL. OLE showed a significant α-glucosidase inhibition activity and dose-dependent protection from hemolysis. In vivo experimentation revealed that the administration of OLE alone and the combination of OLE+ metformin clearly restored the blood glucose and glycated hemoglobin, lipid parameters and liver enzymes to the normal level. The histological examination revealed that the OLE and its combination with metformin successfully repaired the liver, kidneys and pancreatic tissues to bring them close to the normal status and maintain their functionality. (4) Conclusion: Finally, it can be concluded that the OLE and its combination with metformin is a promising treatment for diabetes mellitus type 2 due to their antioxidant activity, which emphasizes the potential use of OLE alone or as an adjuvant agent in the treatment protocol of diabetes mellitus type II.

4.
Sci Rep ; 12(1): 13401, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927320

RESUMO

The current study aimed to figure out the effect of using a combination of 2% inulin, and 2% Fructo-oligosaccharides (FOS) with Lactobacillus acidophilus and their bacteriocin on some yogurt properties such as coagulation time, extending the shelf life of set yogurt and its microbiological quality, also the acceptance by consumers. The results indicated that coagulation time increased by 22.75% in yogurts prepared with Lactobacillus acidophilus and their bacteriocins compared to the control, and titratable acidity increased gradually in all treatments during storage. Hence control acidity (%) increased from 0.84 ± 0.02A at zero time to 1.23 ± 0.03A after 14 days of cold storage, while treatment (T4) was 0.72 ± 0.01C at zero time and reached 1.20 ± 0.5A after 39 days at the same conditions. The sensory properties showed the superiority of inulin, FOS, and Lactobacillus acidophilus bacteriocin groups. Lactobacillus bulgaricus, Streptococcus thermophiles, and Lactobacillus acidophilus count increased in the treatments compared to the control group, with an extended shelf life to 39 days of storage in the medicines containing lactobacillus acidophilus bacteriocin. Coliforms, Moulds, and yeasts did not detect in the treatments comprising 2% inulin, 2% FOS, and lactobacillus acidophilus bacteriocin for 39 days of refrigerated storage. This study proved that 2% inulin, 2% FOS, and Lactobacillus acidophilus bacteriocin fortification extended the shelf life by more than 5 weeks.


Assuntos
Bacteriocinas , Probióticos , Bacteriocinas/farmacologia , Inulina/farmacologia , Lactobacillus acidophilus , Oligossacarídeos/farmacologia , Probióticos/farmacologia , Iogurte/microbiologia
5.
J Adv Vet Anim Res ; 6(3): 403-408, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31583238

RESUMO

OBJECTIVES: The objective of this study was to evaluate the impact of the antimicrobials nisin and lysozyme to control the growth of spoilage bacteria of pasteurized milk during cold storage. MATERIALS AND METHODS: Nisin, lysozyme, and a mixture of them were inoculated into freshly pasteurized milk at 500 IU/ml concentrations each. The acidity, sensory evaluation, and bacteriological quality of the treated pasteurized milk samples were examined at zero time and every 3 days till the samples showed the signs of spoilage, that were checked every day. RESULTS: Obtained results showed that there was a slight increase of the titratable acidity of the control and treated samples during refrigerated storage, but the acidity increase was significantly lower in samples containing lysosomes and/or nisin than the control samples. Nisin and lysozyme at 500 IU/ml concentration possessed inhibitory effect on the total bacterial, aerobic spore-formers, and psychrotrophic bacterial counts and extended the shelf-life of the treated samples. The efficacy of nisin 500 IU/ml combined with lysozyme 500 U/ml was assessed and synergistic activity has been detected, that was expressed in the form of higher inhibitory effect and extending the shelf-life of the samples up to 15 days at cold storage. Moreover, the sensory evaluation showed that nisin and lysozyme does not affect the acceptability of the examined samples. CONCLUSION: The obtained data indicate that nisin and lysozyme have the potential to enhance the post-process bacteriological safety of pasteurized milk during the storage period and could aid in the elimination of post-process contamination and prolong its shelf-life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA