Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(38): 89430-89441, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37454006

RESUMO

This study reports the full recycling of dolomite waste (DW) in the fabrication of a novel cementitious material through a facile and eco-efficient method. The proposed technique includes mixing different alkali-activators (i.e., NaOH and Na2SiO3) with DW powder, followed by curing at room temperature. Based on the alkali-activator type, sodium oxide concentration, and curing time, the formulated mixtures yield a wide range of compressive strengths. When DW powder is mixed with different contents of NaOH (2.5, 5, and 7.5 wt.% Na2O), the resulting hardened materials exhibited modest compressive strengths (less than 11 MPa) due to the formation of the gaylussite Na2CO3·CaCO3·5H2O phase. Concerning the other chemical activator (Na2SiO3), a significant improvement in the compressive strengths of the resulted hardened materials was detected. This was ascribed to the formation of calcium silicate hydrate, with a high binding capacity, through the exchange reaction between Na2SiO3 and CaCO3 inside DW. The sample activated with Na2SiO3 (silica modulus of 1.5) equivalent to Na2O of 7.5 wt.% offered the highest 90-day compressive strength (34 MPa). At silica modulus lower or higher than 1.5, a noticeable decrease in the performance of the hardened materials was observed, which could be attributed to the alter in binding phase composition. Overall, the present work presented a new approach in utilizing the available and low cost carbonate-based wastes as main precursors in the family of promising alkali-activated materials.


Assuntos
Carbonatos , Álcalis , Pós , Hidróxido de Sódio
2.
Environ Sci Pollut Res Int ; 30(36): 84874-84897, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37369899

RESUMO

Many research articles and reviews have recognized alkali-activated materials (AAMs) as eco-friendly alternative binders to ordinary Portland cement (OPC) due to their economic andenvironmental advantages. However, few literature surveys reported the physical, mechanical and microstructural changes that occur after the exposure of AAMs to elevated temperatures. Owing to the wide diversity in the properties of aluminosilicates, alkali-activation conditions, and additives, a deep survey is needed to understand how different factors can affect the performance of AAMs under elevated temperatures. Therefore, this review extensively discusses the impact of recent critical parameters, including aluminosilicate compositions, aggregate type and mineral, micro, and nano additives, on the behavior of AAMs under thermal load. It can be concluded that regardless of alkali-activator type and concentration, alkali-activated fly ash shows higher thermal resistance than alkali-activated metakaolin and slag. Moreover, the presence of an adequate amount of calcium can increase the thermal stability of AAMs, while the iron has a varying effect on the thermal resistance of AAMs, either positively or negatively. Compared with all additives and aggregates, using waste glass and lightweight aggregates enhanced the thermal resistance of AAMs. Howerver, some types of aggregate having a binding ability which increase the residual strength after heat exposure. Considering the fineness of materials, evaluating the role of nano and micro materials on the properties of AAMs at high temperatures is reviewed. Based on this survey, several promising topics for future work are suggested.


Assuntos
Álcalis , Silicatos de Alumínio , Humanos , Cálcio , Cinza de Carvão , Febre , Intoxicação por Metais Pesados
3.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837042

RESUMO

This study reports a potential approach for the valorization of glass waste (GW) that is mainly composed of amorphous silica to prepare lightweight foamed glass (FG). The preparation of FG was achieved by mixing sodium hydroxide with GW powder followed by sintering at a temperature of 800 °C. As-synthesized FG was characterized and applied as an effective adsorbent for the removal of hazardous organic water contaminants, in particular, methylene blue (MB) dye. FG exhibited porosity of 91%, bulk density of 0.65 g/cm3, compressive strength of 4 MPa, and thermal conductivity of 0.27 W/m·K. Theoretical treatment indicated that a monolayer model with one energy site was the best in fitting the removal of MB molecules. The number of MB molecules per active site (n) ranged from 2.20 to 1.70, suggesting vertical orientation and a multi-molecular adsorption mechanism. The density of FG receptor sites (DM) increased with the temperature, and this parameter played a vital role in the adsorption process. The adsorption capacity (Qsat) increased from 255.11 to 305.58 mg/g, which signifies endothermic interactions. MB adsorption on FG was controlled by physical forces such as electrostatic interactions (i.e., the adsorption energies were <20 kJ/mol). The results of this study prove the feasibility of glass waste as an effective and low-cost adsorbent for water remediation.

4.
Environ Sci Pollut Res Int ; 30(9): 24088-24100, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36334206

RESUMO

The role of nanozinc source (nanohydrozincite: nHZ; nanozinc oxide: nZO) on the performance of alkali-activated slag (AAS) was explored for the first time in the present work. The results showed that nHZ with different contents (0.5, 1.0, and 1.5 wt%) retards the early hydration rate of AAS, whereas nZO showed the lowest retardation effect. Zn(OH)2 is the main retarder inside AAS-nZO and AAS-nHZ, which consumes the dissolved Ca2+ (responsible for the early hardening of AAS) from slag to yield calcium zincate hydrate (CZH). The high retardation rate of nHZ is originated from its high affinity to consume much Ca2+ through the formation of additional pirssonite (Na2CO3.CaCO3.2H2O) double salt. Although adding nHZ induced the drying shrinkage of AAS, it improved the later compressive strengths (28 to 365 days), especially at low nHZ content (0.5 wt%), via the formation of CASH with lower Ca/Si ratio and higher binding capacity compared to that formed inside AAS and AAS-nZO. A further research is needed to reduce the drying shrinkage and to accelerate the early strength of AAS containing nHZ.


Assuntos
Álcalis , Cálcio , Força Compressiva , Dessecação , Óxidos
5.
Environ Sci Pollut Res Int ; 30(2): 5267-5279, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35982388

RESUMO

Geopolymer bricks from lead glass sludge (LGS) and alumina flakes filling (AFF) waste were synthesized in the present work. AFF waste was chemically treated to prepare sodium aluminate (NaAlO2) powder. Silicate source (untreated LGS and thermally treated one at 600 °C (LGS600)) and sodium oxide (Na2O) concentration (as NaAlO2) were the compositional parameters, which affected the physical and mechanical properties (compressive strength, water absorption, and bulk density) of the prepared bricks. High organic matter content inside LGS caused a retardation effect on the geopolymerization process, resulting in the formation of hardened bricks with modest 90-day compressive strengths (2.13 to 4.4 MPa). Using LGS600 enhanced the mechanical properties of the fabricated bricks, achieving a maximum 90-day compressive strength of 22.35 MPa at 3 wt.% Na2O. Sodium aluminosilicate hydrate was the main activation product inside all samples, as confirmed by X-ray diffraction and thermal analyses. Acetic acid leaching test also proved that all LGS600-NaAlO2 mixtures represented Pb concentrations in leachates lower than the permissible level of characteristic leaching procedures, indicating the mitigation of environmental problems caused by these wastes.


Assuntos
Resíduos Industriais , Esgotos , Resíduos Industriais/análise , Chumbo/análise , Óxido de Alumínio , Vidro , Hidróxido de Sódio/química , Força Compressiva
6.
Environ Sci Pollut Res Int ; 29(31): 47209-47224, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35182335

RESUMO

This study represents the sustainable/safe consumption of lead glass sludge (LGS) in the fabrication of thermally insulating foamed glass via sintering (750-950º C) and chlorination processes. The impact of selected additives including calcium chloride (CaCl2) and sodium hydroxide (NaOH) on the foaming efficiency and Pb-stabilization has been deeply investigated. LGS is mainly lead silicate material with considerable content of calcium carbonate, which acts as foaming agent during sintering process. The newly developed foamed-materials exhibited thermal conductivity of 0.054-0.136 W/m.K, density of 0.23-1.10 g/cm3, porosity of 63.3-92.6%, and compressive strength of 0.10-2.69 MPa. X-ray diffraction proved that the immobilization mechanism was attributed to the transformation of free Pb within LGS into insoluble ganomalite Pb9Ca5MnSi9O33 phase. Adding NaOH enhanced the foaming process accompanied by a significant reduction in Pb-leaching. Incorporating CaCl2 has resulted in a retardation in Pb-leaching, which associated with Pb-stabilization and Pb-vaporization. In an attempt to reduce CO2-emission, the potential use of alkali-rich-wastewater (AW) as eco-friendly alkali source in lieu of NaOH was studied. Regardless of the variation in Pb-concentrations in leachates, all samples recorded Pb-concentrations lower than the safe limit (≤ 5 mg/l), achieving Pb-immobilization of 95.98-99.87%. The significantly reduced thermal conductivity and enhanced Pb-immobilization efficiency along with the reasonable compressive strength summarize the major innovation presented in this study.


Assuntos
Chumbo , Esgotos , Álcalis , Cloreto de Cálcio , Hidróxido de Sódio
7.
Environ Sci Pollut Res Int ; 29(19): 28647-28660, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34989987

RESUMO

Herein, the possibility of including recycled glass powder as a promising material in amalgamation with slag to produce new binder materials activated by sodium silicate solution capable to resist high temperatures was studied. Slag was partially replaced with glass powder (GP) at ratios in the range of 0-15%, by weight, with a step of 5%. The powders were activated by a constant concentration of sodium silicate solution. The percentage of water absorption and compressive strength were monitored at the ages of 3, 7 and 28 days. After 28 curing days, the specimens were subjected to severe temperatures in the range of 400-1000 °C with a step of 200 °C for 2 h and the residual compressive strength was monitored. The results were analysed by X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and energy-dispersive X-ray spectra. The results revealed higher water absorption and lower compressive strength with the incorporation of GP. The incorporation of GP has a negative effect on the compressive strength of alkali-activated slag (AAS) pastes after exposure to 400 and 600 °C, whilst it has a positive effect after exposure to 800 and 1000 °C.


Assuntos
Álcalis , Resíduos Industriais , Resíduos Industriais/análise , Pós , Temperatura , Água/análise
8.
Materials (Basel) ; 14(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34640064

RESUMO

Hybrid cement (HC) can be defined as alkali activated-blended-Portland cement (PC). It is prepared by the addition of an alkaline solution to high-volume aluminosilicate-blended-PC. Although this cement exhibits higher mechanical performance compared to conventional blended one (aluminosilicate-PC blend), it represents lower commercial viability because of the corrosive nature of alkaline solution. Therefore, this study focuses on the preparing one-part HC using dry activator-based BFS (DAS). DAS was prepared by mixing sodium hydroxide (NaOH) with BFS at low water to BFS ratio, followed by drying and grinding to yield DAS-powder. Different contents of DAS (equivalent to 70 wt.% BFS and 1, 2, and 3 wt.% NaOH) were blended with 30 wt.% PC. A mixture containing 70 wt.% BFS and 30 wt.% PC was used as a reference sample. The mortar was adjusted at a sand-powder (BFS-PC and/or DAS-PC) weight ratio of 3:1. The microstructural analysis proved that DAS-powder is mainly composed of sodium calcium aluminosilicate-activated species and unreacted BFS. These species can interact again with water to form calcium aluminum silicate hydrate (C-A-S-H) and NaOH, suggesting that the DAS acts as a NaOH-carrier. One-part HC mortars having 1, 2, and 3 wt.% NaOH recorded 7th day compressive strength values of 82%, 44%, and 27%, respectively, higher than that of the control sample. At 180 days of curing, a significant reduction in compressive strength was observed within the HC mortar having 3 wt.% NaOH. This could be attributed to the increase of Ca (within C-S-H) replacement by Na, forming a Na-rich phase with lower binding capacity. The main hydration products within HC are C-S-H, C-A-S-H, and chabazite as part of the zeolite family.

9.
J Hazard Mater ; 403: 124017, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265043

RESUMO

This study focused on the stabilization of lead glass sludge (LGS) using reactive magnesia (MgO) via the fabrication of lightweight building bricks. Two types of MgO with different reactivities were prepared by the thermal treatment of magnesium carbonate at 800 °C and 1200 °C (MgO-800 and MgO-1200, respectively). The fabrication of bricks and Pb stabilization were performed by wet mixing LGS with MgO followed by humidity incubation. Results showed that the Pb immobilization and performance of the produced bricks were strongly affected by MgO reactivity, curing time, and LGS-MgO weight ratios. Pb immobilization was performed by the transformation of soluble lead into an insoluble hydrocerussite phase, particularly in hydrated mixtures with high MgO content (> 25 wt%). Pb immobilization inside a magnesium silicate hydrate skeleton is the main mechanism in the hydrated samples containing 25 wt% MgO. To achieve "sustainability," we recommend the use of a hydrated mixture containing 75 wt% of LGS and 25 wt% of MgO-800 in the production of building bricks because this mixture exhibits high compressive strength, high Pb immobilization, low energy demand, and low environmental pollution.

10.
Materials (Basel) ; 13(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353196

RESUMO

This investigation studies the effects of hot water and hot air curing on the strength development, transport properties, and freeze-thaw resistance of mortars incorporating low-heat blast furnace slag cement and nanosilica (NS). Mortar samples were prepared and stored in ambient conditions for 24 h. After demolding, mortar samples were subjected to two different hot curing methods: Hot water and hot air curing (40 °C and 60 °C) for 24 h. For comparison purposes, mortar reference mixes were prepared and cured in water and air at ambient conditions. Strength development (from 1 to 180 days), capillary water porosity, water sorptivity, and freeze-thaw resistance were tested after 180 days of curing. The experimental results showed that both curing regimes accelerate the strength development of mortars, especially in the first seven days of hydration. The highest early strengths were reported for mortars subjected to a temperature of 60 °C, followed by those cured at 40 °C. The hot water curing regime was found to be more suitable, as a result of more stable strength development. Similar findings were observed in regard to durability-related properties. It is worth noting that thermal curing can more efficiently increase strength in the presence of nanosilica, suggesting that NS is more effective in enhancing strength under thermal curing.

11.
Environ Sci Pollut Res Int ; 27(24): 30741-30754, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472505

RESUMO

This study focuses on utilizing a plant-derived urease enzyme (PDUE)-urea mixture to remove heavy metals from water as constituents of nano-carbonate minerals. The bio-removal process was conducted by individually mixing PbCl2, CuCl2, and NiCl2 solutions with a PDUE-urea mixture, followed by incubation for 24 h at 23 ± 2 °C. The preliminary results revealed that the proposed method exhibited high Pb removal efficiency (˃ 99%) in a short time (8 h); meanwhile, moderate Cu and Ni removal efficiencies (67.91% and 58.49%, respectively) were obtained at the same incubation time. The concentration of heavy metals (50-200 mM) had an insignificant effect on the bio-removal rate, indicating that the PDUE-urea mixture is highly effective for the removal of heavy metals at different concentrations. The bio-removal process involved the transformation of soluble heavy metals into insoluble carbonate materials. A spherically shaped nano-cerussite (4-15 nm), a malachite hexahydrate nanosheet (thickness 8 nm), and an ultrafine micro-hellyerite (thickness 0.3 µm) were the main minerals produced by the Pb, Cu, and Ni bio-removal processes, respectively. As a beneficial application, nano-cerussite was used as an additive in an alkali-activated slag/ceramic waste-based geopolymeric coating. A preliminary study proved that increasing the nano-cerussite content enhanced the resistance of the geopolymeric coating to sulfur-oxidizing bacteria, which is detrimental to normal concrete, particularly in sewer systems.


Assuntos
Metais Pesados , Urease , Carbonatos , Chumbo , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA