Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3562, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347025

RESUMO

This article's main objective is to maximize solar radiations (SRs) through the use of the gorilla troop algorithm (GTA) for identifying the optimal tilt angle (OTA) for photovoltaic (PV) panels. This is done in conjunction with an experimental work that consists of three 100 W PV panels tilted at three different tilt angles (TAs). The 28°, 30°, and 50° are the three TAs. The experimental data are collected every day for 181-day and revealed that the TA of 28° is superior to those of 50° and 30°. The GTA calculated the OTA to be 28.445°, which agrees with the experimental results, which show a TA of 28°. The SR of the 28o TA is 59.3% greater than that of the 50° TA and 4.5% higher than that of the 30° TA. Recent methods are used to compare the GTA with the other nine metaheuristics (MHTs)-the genetic algorithm, particle swarm, harmony search, ant colony, cuckoo search, bee colony, fire fly, grey wolf, and coronavirus disease optimizers-in order to figure out the optimal OTA. The OTA is calculated by the majority of the nine MHTs to be 28.445°, which is the same as the GTA and confirms the experimental effort. In only 181-day, the by experimentation it may be documented SR difference between the TAs of 28° and 50° TA is 159.3%. Numerous performance metrics are used to demonstrate the GTA's viability, and it is contrasted with other recent optimizers that are in competition.

2.
Sci Rep ; 13(1): 3268, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841921

RESUMO

The principal target of this work is to compute the optimal tilt angle (OTA) for Photovoltaic (PV) panels. To perform this task, comprehensive simulations are done starting from altering the tilt angle (TA) daily, to use one fixed TA for all the year. The mathematical models for extra-terrestrial radiation (ETR) of both horizontal and inclined surfaces are presented firstly. At a later stage, the optimization formulation for the maximizing the solar radiation (SR) is adapted, and then the daily, monthly, seasonally, half-yearly and optimal fixed TAs are obtained. Although, the daily OTA produces the maximum SR, it is costly and impractical. It is found that altering the TA twice a year at optimal values that are computed as 5° and 50° for Suez city, gives the best results that are very near to the daily altering of the OTA. The difference between the two methods is 1.56% which is very small. Also, the two OTAs has SR better than that of the fixed OTA which is 28° by 7.77%. Also, it is found that the yearly fixed OTA (28°) is nearly equal to the latitude angle of Suez city which is 30°. The two OTAs method of this paper is different from the commonly used method that suggests two TAs. The first TA is used for winter months which is obtained by adding 15° to the latitude angle while the second TA is obtained by subtracting 15° from the latitude angle for the summer months. This commonly used method produces lesser SR than the two OTAs method of this paper. The theoretical work has been proved by an experimental work on two PV systems constructed at 25° and 30° TAs. The results of the experimental work agree with the theoretical results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA