Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 257: 115534, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269671

RESUMO

Derivatives with tetrahydrobenzo[h]quinoline chemotype were synthesized via one-pot reactions and evaluated for their antileishmanial, antimalarial and antitubercular activities. Based on a structure-guided approach, they were designed to possess antileishmanial activity through antifolate mechanism, via targeting Leishmania major pteridine reductase 1 (Lm-PTR1). The in vitro antipromastigote and antiamastigote activity are promising for all candidates and superior to the reference miltefosine, in a low or sub micromolar range of activity. Their antifolate mechanism was confirmed via the ability of folic and folinic acids to reverse the antileishmanial activity of these compounds, comparably to Lm-PTR1 inhibitor trimethoprim. Molecular dynamics simulations confirmed a stable and high potential binding of the most active candidates against leishmanial PTR1. For the antimalarial activity, most of the compounds exhibited promising antiplasmodial effect against P. berghei with suppression percentage of up to 97.78%. The most active compounds were further screened in vitro against the chloroquine resistant strain P. falciparum, (RKL9) and showed IC50 value range of 0.0198-0.096 µM, compared to IC50 value of 0.19420 µM for chloroquine sulphate. Molecular docking of the most active compounds against the wild-type and quadruple mutant pf DHFR-TS structures rationalized the in vitro antimalarial activity. Some candidates showed good antitubercular activity against sensitive Mycobacterium tuberculosis in a low micromolar range of MIC, compared to 0.875 µM of isoniazid. The top active ones were further tested against a multidrug-resistant strain (MDR) and extensively drug-resistant strain (XDR) of Mycobacterium tuberculosis. Interestingly, the in vitro cytotoxicity test of the best candidates displayed high selectivity indices emphasizing their safety on mammalian cells. Generally, this work introduces a fruitful matrix for new dual acting antileishmanial-antimalarial chemotype graced with antitubercular activity. This would help in tackling drug-resistance issues in treating some Neglected Tropical Diseases.


Assuntos
Antimaláricos , Antiprotozoários , Antituberculosos , Antagonistas do Ácido Fólico , Hidroxiquinolinas , Quinolinas , Animais , Antimaláricos/farmacologia , Antiprotozoários/farmacologia , Antituberculosos/farmacologia , Cloroquina/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Hidroxiquinolinas/farmacologia , Leishmania major/efeitos dos fármacos , Mamíferos , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolinas/química
2.
J Histotechnol ; 45(2): 56-65, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34845972

RESUMO

Myxoid liposarcoma (MLPS) has different patterns that are often difficult to distinguish from other soft tissue lesions. MLPS is characterized by a reciprocal translocation involving the DNA Damage Inducible Transcript 3 gene (DDIT3) that can be detected using fluorescent in situ hybridization (FISH). Recently, the marker for cancer testis antigen 1b (CTAG1B) was found to be expressed in MLPS. The aim of the present study was to assess the potential use immunohistochemistry (IHC) for CTAG1B expression and DDIT3 rearrangement to diagnose MLPS and distinguish it from similar lesions. Out of 29 cases including MLPS and its mimics, CTAG1B was expressed in 92.86% of cases of MLPS and 20% of its mimics. DDIT3 rearrangement was 100% sensitive and 92.86% specific in distinguishing MLPS from its mimics. The DDIT3 rearrangement was found to be more sensitive but less specific than cytoplasmic expression of CTAG1B marker. DDIT3 polysomy and amplification were detected in some cases. Therefore, both CTAG1B expression and FISH for DDIT3 gene can be used to distinguish MLPS from similar tumors. The use of both immunohistochemistry for CTAG1B in addition to DDIT3 gene rearrangement detection by FISH was more specific than using either of them alone. However, the DDIT3 gene rearrangement alone was the most sensitive test for distinguishing MLPS from its mimics.


Assuntos
Lipossarcoma Mixoide , Neoplasias de Tecidos Moles , Antígenos de Neoplasias , Células Clonais/patologia , Variações do Número de Cópias de DNA , Dosagem de Genes , Rearranjo Gênico/genética , Humanos , Hibridização in Situ Fluorescente , Lipossarcoma Mixoide/diagnóstico , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/patologia , Masculino , Proteínas de Membrana/genética , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Fator de Transcrição CHOP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA