Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
EMBO Rep ; 25(4): 1962-1986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548973

RESUMO

Oncogenic intercellular signaling is regulated by extracellular vesicles (EVs), but the underlying mechanisms remain mostly unclear. Since TCTP (translationally controlled tumor protein) is an EV component, we investigated whether it has a role in genotoxic stress signaling and malignant transformation. By generating a Tctp-inducible knockout mouse model (Tctp-/f-), we report that Tctp is required for genotoxic stress-induced apoptosis signaling via small EVs (sEVs). Human breast cancer cells knocked-down for TCTP show impaired spontaneous EV secretion, thereby reducing sEV-dependent malignant growth. Since Trp53-/- mice are prone to tumor formation, we derived tumor cells from Trp53-/-;Tctp-/f- double mutant mice and describe a drastic decrease in tumori-genicity with concomitant decrease in sEV secretion and content. Remarkably, Trp53-/-;Tctp-/f- mice show highly prolonged survival. Treatment of Trp53-/- mice with sertraline, which inhibits TCTP function, increases their survival. Mechanistically, TCTP binds DDX3, recruiting RNAs, including miRNAs, to sEVs. Our findings establish TCTP as an essential protagonist in the regulation of sEV-signaling in the context of apoptosis and tumorigenicity.


Assuntos
Biomarcadores Tumorais , Neoplasias , Camundongos , Humanos , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias/patologia , Apoptose , Transdução de Sinais
2.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770656

RESUMO

During the past three decades, humans have been confronted with different new coronavirus outbreaks. Since the end of the year 2019, COVID-19 threatens the world as a rapidly spreading infectious disease. For this work, we targeted the non-structural protein 16 (nsp16) as a key protein of SARS-CoV-2, SARS-CoV-1 and MERS-CoV to develop broad-spectrum inhibitors of nsp16. Computational methods were used to filter candidates from a natural product-based library of 224,205 compounds obtained from the ZINC database. The binding of the candidates to nsp16 was assessed using virtual screening with VINA LC, and molecular docking with AutoDock 4.2.6. The top 9 compounds were bound to the nsp16 protein of SARS-CoV-2, SARS-CoV-1, and MERS-CoV with the lowest binding energies (LBEs) in the range of -9.0 to -13.0 kcal with VINA LC. The AutoDock-based LBEs for nsp16 of SARS-CoV-2 ranged from -11.42 to -16.11 kcal/mol with predicted inhibition constants (pKi) from 0.002 to 4.51 nM, the natural substrate S-adenosyl methionine (SAM) was used as control. In silico results were verified by microscale thermophoresis as in vitro assay. The candidates were investigated further for their cytotoxicity in normal MRC-5 lung fibroblasts to determine their therapeutic indices. Here, the IC50 values of all three compounds were >10 µM. In summary, we identified three novel SARS-CoV-2 inhibitors, two of which showed broad-spectrum activity to nsp16 in SARS-CoV-2, SARS-CoV-1, and MERS-CoV. All three compounds are coumarin derivatives that contain chromen-2-one in their scaffolds.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , S-Adenosilmetionina
3.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36355517

RESUMO

BACKGROUND: This study aimed to assess the effect of a fixed combination of Red Ginseng and Red Sage (RG-RS) on the gene expression of neuronal cells to evaluate the potential impacts on cellular functions and predict its relevance in the treatment of stress and aging-related diseases and disorders. METHODS: Gene expression profiling was conducted by transcriptome-wide mRNA microarray analyses of murine HT22 hippocampal cell culture after treatment with RG-RS preparation. Ingenuity pathway analysis (IPA) was performed with datasets of significantly upregulated or downregulated genes and the expected effects on the physiological and cellular function and the diseases were identified. RESULTS: RG-RS deregulates 1028 genes associated with cancer and 139 with metastasis, suggesting a predicted decrease in tumorigenesis, the proliferation of tumor cells, tumor growth, metastasis, and an increase in apoptosis and autophagy by their effects on the various signaling and metabolic pathways, including the inhibition of Warburg's aerobic glycolysis, estrogen-mediated S-phase entry signaling, osteoarthritis signaling, and the super-pathway of cholesterol biosynthesis. CONCLUSION: The results of this study provide evidence of the potential efficacy of the fixed combination of Red Ginseng (Panax ginseng C.A. Mey.) and Red Sage/Danshen (Salvia miltiorrhiza Bunge) in cancer. Further clinical and experimental studies are required to assess the efficacy and safety of RG-RS in preventing the progression of cancer, osteoarthritis, and other aging-related diseases.

4.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36145267

RESUMO

The nucleocapsid protein (NP) is one of the main proteins out of four structural proteins of coronaviruses including the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, discovered in 2019. NP packages the viral RNA during virus assembly and is, therefore, indispensable for virus reproduction. NP consists of two domains, i.e., the N- and C-terminal domains. RNA-binding is mainly performed by a binding pocket within the N-terminal domain (NTD). NP represents an important target for drug discovery to treat COVID-19. In this project, we used the Vina LC virtual drug screening software and a ZINC-based database with 210,541 natural and naturally derived compounds that specifically target the binding pocket of NTD of NP. Our aim was to identify coronaviral inhibitors that target NP not only of SARS-CoV-2 but also of other diverse human pathogenic coronaviruses. Virtual drug screening and molecular docking procedures resulted in 73 candidate compounds with a binding affinity below -9 kcal/mol with NP NTD of SARS-CoV-1, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-NL63, HoC-229E, and HCoV-HKU1. The top five compounds that met the applied drug-likeness criteria were then tested for their binding in vitro to the NTD of the full-length recombinant NP proteins using microscale thermophoresis. Compounds (1), (2), and (4), which belong to the same scaffold family of 4-oxo-substituted-6-[2-(4a-hydroxy-decahydroisoquinolin-2-yl)2H-chromen-2-ones and which are derivates of coumarin, were bound with good affinity to NP. Compounds (1) and (4) were bound to the full-length NP of SARS-CoV-2 (aa 1-419) with Kd values of 0.798 (±0.02) µM and 8.07 (±0.36) µM, respectively. Then, these coumarin derivatives were tested with the SARS-CoV-2 NP NTD (aa 48-174). Compounds (1) and (4) revealed Kd-values of 0.95 (±0.32) µM and 7.77 (±6.39) µM, respectively. Compounds (1) and (4) caused low toxicity in human A549 and MRC-5 cell lines. These compounds may represent possible drug candidates, which need further optimization to be used against COVID-19 and other coronaviral infections.

5.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35337106

RESUMO

The main protease (Mpro or 3CLpro) in coronaviruses represents a promising specific drug target as it is essential for the cleavage of the virus polypeptide and has a unique cleavage site that does not exist in human host proteases. In this study, we explored potential natural pan-coronavirus drugs using in vitro and in silico approaches and three coronavirus main proteases as treatment targets. The PyRx program was used to screen 39,442 natural-product-like compounds from the ZINC database and 121 preselected phytochemicals from medicinal plants with known antiviral activity. After assessment with Lipinski's rule of five, molecular docking was performed for the top 33 compounds of both libraries. Enzymatic assays were applied for the top candidates from both in silico approaches to test their ability to inhibit SARS-CoV-2 Mpro. The four compounds (hypericin, rosmarinic acid, isorhamnetin, and luteolin) that most efficiently inhibited SARS-CoV-2 Mpro in vitro were further tested for their efficacy in inhibiting Mpro of SARS-CoV-1 and MERS-CoV. Microscale thermophoresis was performed to determine dissociation constant (Kd) values to validate the binding of these active compounds to recombinant Mpro proteins of SARS-CoV-2, SARS-CoV-1, and MERS-CoV. The cytotoxicity of hypericin, rosmarinic acid, isorhamnetin, and luteolin was assessed in human diploid MRC-5 lung fibroblasts using the resazurin cell viability assay to determine their therapeutic indices. Sequence alignment of Mpro of SARS-CoV-2 demonstrated 96.08%, 50.83%, 49.17%, 48.51%, 44.04%, and 41.06% similarity to Mpro of other human-pathogenic coronaviruses (SARS-CoV-1, MERS-CoV, HCoV-NL63, HCoV-OC43, HCoV-HKU1, and HCoV-229E, respectively). Molecular docking showed that 12 out of 121 compounds were bound to SARS-CoV-2 Mpro at the same binding site as the control inhibitor, GC376. Enzyme inhibition assays revealed that hypericin, rosmarinic acid, isorhamnetin, and luteolin inhibited Mpro of SARS-CoV-2, while hypericin and isorhamnetin inhibited Mpro of SARS-CoV-1; hypericin showed inhibitory effects toward Mpro of MERS-CoV. Microscale thermophoresis confirmed the binding of these compounds to Mpro with high affinity. Resazurin assays showed that rosmarinic acid and luteolin were not cytotoxic toward MRC-5 cells, whereas hypericin and isorhamnetin were slightly cytotoxic. We demonstrated that hypericin represents a potential novel pan-anti-coronaviral agent by binding to and inhibiting Mpro of several human-pathogenic coronaviruses. Moreover, isorhamnetin showed inhibitory effects toward SARS-CoV-2 and SARS-CoV-1 Mpro, indicating that this compound may have some pan-coronaviral potential. Luteolin had inhibitory effects against SARS-CoV-2 Mpro.

6.
Phytomedicine ; 100: 154064, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35344715

RESUMO

BACKGROUND: Nobiletin is a polymethoxylated flavone from citrus fruit peels. Among other bioactivities, it acts antioxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective. Nobiletin exerts profound anticancer activity in vitro and in vivo but the underlying mechanisms are not well understood. PURPOSE: The aim was to unravel the multiple modes of action against cancer cells by bioinformatic and transcriptomic techniques and their verification by molecular pharmacological methods. METHODS: The in silico methods used were COMPARE analysis of transcriptomic data, signaling pathway analysis, transcription factor binding motif analysis in promoter sequences of target genes, and molecular docking. The in vitro methods used were resazurin assay, isobologram analysis, generation of stably SOX5-tranfected cells, and Western blotting. RESULTS: Nobiletin was cytotoxic against a wide range of cell lines from different tumor types, including diverse phenotypes to established anticancer drugs (e.g., P-glycoprotein, ABCB5, p53, EGFR). Cross-resistance profiling with 83 standard anticancer drugs revealed a correlation to antihormonal anticancer drugs, which can be explained by the phytoestrogenic features of nobiletin. Transcriptomic analysis showed that the responsiveness of tumor cells was predictable by their specific mRNA expression profile. Nobiletin bound to the transcription factor SOX5 in silico. SOX5 conferred resistance to the control drug doxorubicin but collateral sensitivity to nobiletin in HEK293 cells transfected with a lentiviral GFP-tagged pLOCORF-SOX5 vector. The combination of nobiletin and doxorubicin synergistically killed HEK293-SOX5 cells in isobologram analyses, implying attractive new treatment options. CONCLUSION: Nobiletin represents an interesting candidate for cancer therapy with broad-spectrum activity and multiple modes of action. The identification of novel targets (i.e., SOX5) may allow its use for targeted tumor therapy in individualized treatment protocols.


Assuntos
Flavonas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Flavonas/farmacologia , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Fatores de Transcrição SOXD , Fatores de Transcrição , Transcriptoma , Transfecção
7.
Cell Biol Toxicol ; 38(2): 325-345, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33884520

RESUMO

Pyrrolizidine alkaloids (PAs) are a large group of highly toxic chemical compounds, which are found as cross-contaminants in numerous food products (e.g., honey), dietary supplements, herbal teas, and pharmaceutical herbal medicines. PA contaminations are responsible for serious hepatotoxicity and hepatocarcinogenesis. Health authorities have to set legal limit values to guarantee the safe consumption of plant-based nutritional and medical products without harmful health. Toxicological and chemical analytical methods are conventionally applied to determine legally permitted limit values for PAs. In the present investigation, we applied a highly sensitive transcriptomic approach to investigate the effect of low concentrations of five PAs (lasiocarpine, riddelliine, lycopsamine, echimidine, and monocrotaline) on human cytochrome P450 3A4-overexpressing HepG2 clone 9 hepatocytes. The transcriptomic profiling of deregulated gene expression indicated that the PAs disrupted important signaling pathways related to cell cycle regulation and DNA damage repair in the transfected hepatocytes, which may explain the carcinogenic PA effects. As PAs affected the expression of genes that involved in cell cycle regulation, we applied flow cytometric cell cycle analyses to verify the transcriptomic data. Interestingly, PA treatment led to an arrest in the S phase of the cell cycle, and this effect was more pronounced with more toxic PAs (i.e., lasiocarpine and riddelliine) than with the less toxic monocrotaline. Using immunofluorescence, high fractions of cells were detected with chromosome congression defects upon PA treatment, indicating mitotic failure. In conclusion, the tested PAs revealed threshold concentrations, above which crucial signaling pathways were deregulated resulting in cell damage and carcinogenesis. Cell cycle arrest and DNA damage repair point to the mutagenicity of PAs. The disturbance of chromosome congression is a novel mechanism of Pas, which may also contribute to PA-mediated carcinogenesis. Transcriptomic, cell cycle, and immunofluorescence analyses should supplement the standard techniques in toxicology to unravel the biological effects of PA exposure in liver cells as the primary target during metabolization of PAs.


Assuntos
Alcaloides de Pirrolizidina , Transcriptoma , Carcinogênese , Ciclo Celular , Células Clonais/química , Dano ao DNA , Células Hep G2 , Humanos , Monocrotalina , Alcaloides de Pirrolizidina/análise , Alcaloides de Pirrolizidina/toxicidade , Transcriptoma/genética
9.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34681222

RESUMO

Numerous in vitro studies on isolated cells have been conducted to uncover the molecular mechanisms of action of Panax ginseng Meyer root extracts and purified ginsenosides. However, the concentrations of ginsenosides and the extracts used in these studies were much higher than those detected in pharmacokinetic studies in humans and animals orally administered with ginseng preparations at therapeutic doses. Our study aimed to assess: (a) the effects of ginsenoside Rg5, the major "rare" ginsenoside of Red Ginseng, on gene expression in the murine neuronal cell line HT22 in a wide range of concentrations, from 10-4 to 10-18 M, and (b) the effects of differentially expressed genes on cellular and physiological functions in organismal disorders and diseases. Gene expression profiling was performed by transcriptome-wide mRNA microarray analyses in HT22 cells after treatment with ginsenoside Rg5. Ginsenoside Rg5 exhibits soft-acting effects on gene expression of neuronal cells in a wide range of physiological concentrations and strong reversal impact at high (toxic) concentration: significant up- or downregulation of expression of about 300 genes at concentrations from 10-6 M to 10-18 M, and dramatically increased both the number of differentially expressed target genes (up to 1670) and the extent of their expression (fold changes compared to unexposed cells) at a toxic concentration of 10-4 M. Network pharmacology analyses of genes' expression profiles using ingenuity pathway analysis (IPA) software showed that at low physiological concentrations, ginsenoside Rg5 has the potential to activate the biosynthesis of cholesterol and to exhibit predictable effects in senescence, neuroinflammation, apoptosis, and immune response, suggesting soft-acting, beneficial effects on organismal death, movement disorders, and cancer.

10.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34681234

RESUMO

Panax ginseng C.A.Mey. is an adaptogenic plant traditionally used to enhance mental and physical capacities in cases of weakness, exhaustion, tiredness, or loss of concentration, and during recovery. According to ancient records, red ginseng root preparations enhance longevity with long-term intake. Recent pharmacokinetic studies of ginsenosides in humans and our in vitro study in neuronal cells suggest that ginsenosides are effective when their levels in blood is low-at concentrations from 10-6 to 10-18 M. In the present study, we compared the effects of red ginseng root preparation HRG80TM(HRG) at concentrations from 0.01 to 10,000 ng/mL with effects of white ginseng (WG) and purified ginsenosides Rb1, Rg3, Rg5 and Rk1 on gene expression in isolated hippocampal neurons. The aim of this study was to predict the effects of differently expressed genes on cellular and physiological functions in organismal disorders and diseases. Gene expression profiling was performed by transcriptome-wide mRNA microarray analyses in murine HT22 cells after treatment with ginseng preparations. Ingenuity pathway downstream/upstream analysis (IPA) was performed with datasets of significantly up- or downregulated genes, and expected effects on cellular function and disease were identified by IPA software. Ginsenosides Rb1, Rg3, Rg5, and Rk1 have substantially varied effects on gene expression profiles (signatures) and are different from signatures of HRG and WG. Furthermore, the signature of HRG is changed significantly with dilution from 10,000 to 0.01 ng/mL. Network pharmacological analyses of gene expression profiles showed that HRG exhibits predictable positive effects in neuroinflammation, senescence, apoptosis, and immune response, suggesting beneficial soft-acting effects in cancer, gastrointestinal, and endocrine systems diseases and disorders in a wide range of low concentrations in blood.

11.
Phytomedicine ; 88: 153598, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111615

RESUMO

INTRODUCTION: Depression is one of the leading causes of death worldwide. Lower antioxidant concentrations and increased oxidative stress levels contribute to the development of depression. Effective and tolerable medications are urgently needed. Nrf2 and PRDX2 are promising targets in the treatment of oxidative stress and, therefore, promising for the development of novel antidepressants. Ursolic acid (UA), a natural triterpenoid found in various plants is known to exert neuroprotective and antioxidant effects. Skn-1 (which corresponds to human Nrf2) and prdx2 deficient mutants of the nematode Caenorhabditis elegans are suitable models to study the effect of UA on these targets. Additionally, stress assays are used to mimic stress or depressed state. METHODS: We examined the antioxidant activity of UA in Caenorhabditis elegans wildtype and skn-1- and prdx2-deficient strains by H2DCF-DA and juglone assays as well as osmotic and heat stress assays. Additionally, we analyzed the binding of UA to human PRDX2 and Skn-1 proteins by molecular docking and microscale thermophoresis. RESULTS: UA exerted strong antioxidant activities. Additionally, induction of stress resistance towards osmotic and heat stress was observed. qRT-PCR revealed that UA upregulated the gene expression of skn-1 and prdx2. Molecular docking studies supported these findings. CONCLUSION: Our findings implicate that the strong antioxidant activity of UA may exert anti-depressive effects by its interaction with the Skn-1 transcription factor, which is part of a detoxification network, and the antioxidant PRDX2 protein, which protects the organism from the detrimental effects of radical oxygen species.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Depressão/genética , Estresse Fisiológico/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antidepressivos/farmacologia , Antioxidantes/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mutação , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxinas/genética , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Triterpenos/química , Ácido Ursólico
12.
Phytomedicine ; 84: 153482, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33611213

RESUMO

INTRODUCTION: Approximately 300 million people worldwide suffer from depression. The COVID-19 crisis may dramatically increase these numbers. Severe side effects and resistance development limit the use of standard antidepressants. The steroidal lactone withanolide A (WA) from Withania somnifera may be a promising alternative. Caenorhabditis elegans was used as model to explore WA's anti-depressive and anti-stress potential. METHODS: C. elegans wildtype (N2) and deficient strains (AQ866, DA1814, DA2100, DA2109 and MT9772) were used to assess oxidative, osmotic or heat stress as measured by generation of reactive oxygen species (ROS), determination of lifespan, and mRNA expression of serotonin receptor (ser-1, ser-4, ser-7) and serotonin transporter genes (mod-5). The protective effect of WA was compared to fluoxetine as clinically established antidepressant. Additionally, WA's effect on lifespan was determined. Furthermore, the binding affinities and pKi values of WA, fluoxetine and serotonin as natural ligand to Ser-1, Ser-4, Ser-7, Mod-5 and their human orthologues proteins were calculated by molecular docking. RESULTS: Baseline oxidative stress was higher in deficient than wildtype worms. WA and fluoxetine reduced ROS levels in all strains except MT9772. WA and fluoxetine prolonged survival times in wildtype and mutants under osmotic stress. WA but not fluoxetine increased lifespan of all heat-stressed C. elegans strains except DA2100. Furthermore, WA but not fluoxetine extended lifespan in all non-stressed C. elegans strains. WA also induced mRNA expression of serotonin receptors and transporters in wildtype and mutants. WA bound with higher affinity and lower pKi values to all C. elegans and human serotonin receptors and transporters than serotonin, indicating that WA may competitively displaced serotonin from the binding pockets of these proteins. CONCLUSION: WA reduced stress and increased lifespan by ROS scavenging and interference with the serotonin system. Hence, WA may serve as promising candidate to treat depression.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Receptores de Serotonina/genética , Vitanolídeos/farmacologia , Animais , Caenorhabditis elegans/fisiologia , Fluoxetina/farmacologia , Técnicas de Inativação de Genes , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Serotonina/metabolismo , Withania/química
13.
Food Funct ; 12(5): 2242-2256, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33596295

RESUMO

INTRODUCTION: Depression and anxiety disorders contribute to the global disease burden. Ursolic acid (UA), a natural compound present in many vegetables, fruits and medicinal plants, was tested in vivo for its effect on (1) enhancing resistance to stress and (2) its effect on life span. METHODS: The compound was tested for its antioxidant activity in C. elegans. Stress resistance was tested in the heat and osmotic stress assay. Additionally, the influence on normal life span was examined. RT-PCR was used to assess possible serotonin targets. RESULTS: UA prolonged the life span of C. elegans. Additionally, UA significantly lowered reactive oxygen species (ROS). Molecular docking studies, PCR analysis and microscale thermophoresis (MST) supported the results that UA acts through serotonin receptors to enhance stress resistance. DISCUSSION: Considering the urgent need for new and safe medications in the treatment of depression and anxiety disorders, our results indicate that UA may be a promising new drug candidate.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Serotonina/deficiência , Estresse Fisiológico/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Temperatura Alta , Longevidade/efeitos dos fármacos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Naftoquinonas/farmacologia , Pressão Osmótica , Espécies Reativas de Oxigênio , Receptores de Serotonina/química , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/fisiologia , Serotonina/genética , Ácido Ursólico
14.
Autophagy ; 17(1): 1-382, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33634751

RESUMO

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.


Assuntos
Autofagia , Animais , Autofagossomos , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Bioensaio/normas , Biomarcadores , Humanos , Lisossomos
15.
Invest New Drugs ; 39(4): 914-927, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33492639

RESUMO

Introduction Differentiation therapy is a promising strategy for cancer treatment. The translationally controlled tumor protein (TCTP) is an encouraging target in this context. By now, this field of research is still at its infancy, which motivated us to perform a large-scale screening for the identification of novel ligands of TCTP. We studied the binding mode and the effect of TCTP blockade on the cell cycle in different cancer cell lines. Methods Based on the ZINC-database, we performed virtual screening of 2,556,750 compounds to analyze the binding of small molecules to TCTP. The in silico results were confirmed by microscale thermophoresis. The effect of the new ligand molecules was investigated on cancer cell survival, flow cytometric cell cycle analysis and protein expression by Western blotting and co-immunoprecipitation in MOLT-4, MDA-MB-231, SK-OV-3 and MCF-7 cells. Results Large-scale virtual screening by PyRx combined with molecular docking by AutoDock4 revealed five candidate compounds. By microscale thermophoresis, ZINC10157406 (6-(4-fluorophenyl)-2-[(8-methoxy-4-methyl-2-quinazolinyl)amino]-4(3H)-pyrimidinone) was identified as TCTP ligand with a KD of 0.87 ± 0.38. ZINC10157406 revealed growth inhibitory effects and caused G0/G1 cell cycle arrest in MOLT-4, SK-OV-3 and MCF-7 cells. ZINC10157406 (2 × IC50) downregulated TCTP expression by 86.70 ± 0.44% and upregulated p53 expression by 177.60 ± 12.46%. We validated ZINC10157406 binding to the p53 interaction site of TCTP and replacing p53 by co-immunoprecipitation. Discussion ZINC10157406 was identified as potent ligand of TCTP by in silico and in vitro methods. The compound bound to TCTP with a considerably higher affinity compared to artesunate as known TCTP inhibitor. We were able to demonstrate the effect of TCTP blockade at the p53 binding site, i.e. expression of TCTP decreased, whereas p53 expression increased. This effect was accompanied by a dose-dependent decrease of CDK2, CDK4, CDK, cyclin D1 and cyclin D3 causing a G0/G1 cell cycle arrest in MOLT-4, SK-OV-3 and MCF-7 cells. Our findings are supposed to stimulate further research on TCTP-specific small molecules for differentiation therapy in oncology.


Assuntos
Antineoplásicos/farmacologia , Drogas em Investigação/farmacologia , Neoplasias/tratamento farmacológico , Proteína Tumoral 1 Controlada por Tradução/antagonistas & inibidores , Antineoplásicos/administração & dosagem , Artesunato/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Relação Dose-Resposta a Droga , Drogas em Investigação/administração & dosagem , Humanos , Ligantes , Simulação de Acoplamento Molecular , Neoplasias/patologia , Proteína Tumoral 1 Controlada por Tradução/metabolismo
16.
Invest New Drugs ; 39(2): 348-361, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978717

RESUMO

Multiple myeloma (MM) is a devastating disease with low survival rates worldwide. The mean lifetime of patients may be extendable with new drug alternatives. Aurora A kinase (AURKA) is crucial in oncogenesis, because its overexpression or amplification may incline the development of various types of cancer, including MM. Therefore, inhibitors of AURKA are innovative and promising targets. Natural compounds always represented a valuable resource for anticancer drug development. In the present study, based on virtual drug screening of more than 48,000 natural compounds, the antibiotic deschloro-chlorotricin (DCCT) has been identified to bind to AURKA with even higher binding affinity (free bindung energy: -12.25 kcal/mol) than the known AURKA inhibitor, alisertib (free binding energy: -11.25 kcal/mol). The in silico studies have been verified in vitro by using microscale thermophoresis. DCCT inhibited MM cell lines (KMS-11, L-363, RPMI-8226, MOLP-8, OPM-2, NCI-H929) with IC50 values in a range from 0.01 to 0.12 µM. Furthermore, DCCT downregulated AURKA protein expression, induced G2/M cell cycle arrest and disturbed the cellular microtubule network as determined by Western blotting, flow cytometry, and fluorescence microscopy. Thus, DCCT may be a promising lead structure for further derivatization and the development of specific AURKA inhibitors in MM therapy.


Assuntos
Aminoglicosídeos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Azepinas/antagonistas & inibidores , Azepinas/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Ligação Proteica/fisiologia , Pirimidinas/antagonistas & inibidores , Pirimidinas/farmacologia
17.
Phytomedicine ; 86: 153196, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32229058

RESUMO

BACKGROUND: A major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types. PURPOSE: Identification of novel molecules that overcome MDR by targeting ABC-transporters. METHODS: Resazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software. RESULTS: In our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis. CONCLUSION: Our study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/metabolismo
18.
Chem Biol Interact ; 333: 109334, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33245930

RESUMO

The cytotoxic potential of a naturally occurring indoloquinazoline alkaloid, soyauxinium chloride (SCHL), was determined on a broad panel of animal and human cancer cell lines, including various sensitive and drug-resistant phenotypes. The cytotoxicity, SCHL-induced autophagic, ferroptotic, and necroptotic cell death were evaluated by the resazurin reduction assay (RRA). Caspase-Glo assay was used to detect the activity of caspases using spectrophotometric analysis. Flow cytometry was applied for cell cycle analysis (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-1) and reactive oxygen species (ROS) (H2DCFH-DA). SCHL and doxorubicin (reference molecule) exhibited cytotoxic effects towards the 18 cancer cell lines tested. The IC50 values obtained ranged from 3.64 µM (towards CCRF-CEM leukemia cells) to 16.86 µM (against the BRAF-wildtype SKMel-505 melanoma cells for SCHL). Collateral sensitivity of the resistant HCT116 p53-/- colon adenocarcinoma cells to SCHL was observed as well as the normal sensitivity of CEM/ADR5000 leukemia cells, MDA-MB-231-BCRP breast adenocarcinoma cells and U87. MGΔEGFR glioblastoma cells. SCHL induced apoptosis in CCRF-CEM cells via caspases 3/7-, 8- and 9-activation, MMP alteration and increased ROS production, and otherwise ferroptosis and necroptosis. SCHL is a prominent cytotoxic alkaloid that should be further studied to develop a novel drug to combat cancers including refractory phenotypes.


Assuntos
Antineoplásicos/farmacologia , Morte Celular Regulada/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ferroptose/efeitos dos fármacos , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/patologia , Necroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Phytomedicine ; 80: 153371, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33070080

RESUMO

BACKGROUND: Apigenin is one of the most abundant dietary flavonoids that possesses multiple bio-functions. PURPOSE: This study was designed to determine the influence of apigenin on gene expressions, cancer cells, as well as STAT1/COX-2/iNOS pathway mediated inflammation and tumorigenesis in HEK293-STAT1 cells. Furthermore, the cytotoxic activity toward multiple myeloma (MM) cell lines was investigated. METHODS: Bioinformatic analyses were used to predict the sensitivity and resistance of tumor cells toward apigenin and to determine cellular pathways influenced by this compound. The cytotoxic and ferroptotic activity of apigenin was examined by the resazurin reduction assay. Additionally, we evaluated apoptosis, and cell cycle distribution, induction of reactive oxygen species (ROS) and loss of integrity of mitochondrial membrane (MMP) by using the flow cytometry analysis. DAPI staining was used to detect characteristic apoptotic features. Furthermore, we verified its anti-inflammatory and additional mechanism of cell death by western blotting. RESULTS: COMPARE and hierarchical cluster analyses exhibited that 29 of 55 tumor cell lines were sensitive against apigenin (p < 0.001). The Ingenuity Pathway Analysis data showed that important bio-functions affected by apigenin were: gene expression, cancer, hematological system development and function, inflammatory response, and cell cycle. The STAT1 transcription factor was chosen as target protein on the basis of gene promoter binding motif analyses. Apigenin blocked cell proliferation of wild-type HEK293 and STAT1 reporter cells (HEK293-STAT1), promoted STAT1 suppression and subsequent COX-2 and iNOS inhibition. Apigenin also exhibited synergistic activity in combination with doxorubicin toward HEK293-STAT1 cells. Apigenin exerted excellent growth-inhibitory activity against MM cells in a concentration-dependent manner with the greatest activity toward NCI-H929 (IC50 value: 10.73 ± 3.21 µM). Apigenin induced apoptosis, cell cycle arrest, ferroptosis and autophagy in NCI-H929 cells. CONCLUSION: Apigenin may be a suitable candidate for MM treatment. The inhibition of the STAT1/COX-2/iNOS signaling pathway by apigenin is an important mechanism not only in the suppression of inflammation but also in induction of apoptosis.


Assuntos
Apigenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fator de Transcrição STAT1/genética , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apigenina/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Células HEK293 , Humanos , Mieloma Múltiplo/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT1/metabolismo
20.
Phytomedicine ; 76: 153261, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32559584

RESUMO

BACKGROUND: The discovery of novel phytochemicals represents a reasonable approach to fight malignancies, especially those which are resistant to standard chemotherapy. PURPOSE: We evaluated the cytotoxic potential of a naturally occurring N-acetylglycoside of oleanolic acid, aridanin, on 18 cancer cell lines, including sensitive and drug-resistant phenotypes mediated by P-glycoprotein, BCRP, p53 knockout, deletion-mutated EGFR, or BRAF mutations. Furthermore, metastasizing B16/F10 cells, HepG2 hepatocarcinoma and normal AML12 hepatocytes were investigated. The mechanisms of aridanin-induced cell death was further investigated. METHODS: The resazurin reduction assay (RRA) was applied to evaluate the cytotoxicity, autophagy, ferroptotic and necroptotic cell death. CCRF-CEM leukemia cells were used for all mechanistic studies. A caspase-Glo assay was applied to evaluate the caspase activities. Flow cytometry was applied for the analyses of cell cycle (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP; JC-1) and reactive oxygen species (ROS; H2DCFH-DA). RESULTS: Aridanin and doxorubicin (positive control) inhibited the proliferation of all cancer cell lines tested. The IC50 values for aridanin varied from 3.18 µM (CCRF-CEM cells) to 9.56 µM (HepG2 cells). Aridanin had considerably lower IC50 values than that of doxorubicin against multidrug-resistant CEM/ADR5000 cells and melanoma cell lines (MaMel-80a, Mel-2a, MV3, and SKMel-505). Aridanin induced apoptosis in CCRF-CEM cells through increase of ROS levels and MMP breakdown, and to a lesser extent via caspases activation. Aridanin also induced ferroptotic and necroptotic cell death. CONCLUSION: The present study opens good perpectives for the use of this phytochemical as an anticancer drug to combat multi-facorial resistance to established chemotherapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA