Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354025

RESUMO

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Assuntos
Carcinoma Hepatocelular , Inibidores da Dipeptidil Peptidase IV , Neoplasias Hepáticas , Animais , Ratos , Linagliptina/farmacologia , Proteínas Quinases Ativadas por AMP , Dietilnitrosamina/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Hipoglicemiantes , Inibidores de Proteases , Antivirais , Anti-Inflamatórios
3.
Biol Pharm Bull ; 46(11): 1558-1568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914358

RESUMO

This study was designed to evaluate the potential protective impact of estrogen and estrogen receptor against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. The levels of liver injury serum biomarkers, liver content of interleukin-6 (IL-6), relative liver weight and distortion of liver histological pictures were significantly increased in ovariectomized (OVX) rats and SHAM rats that received DEN alone and were further exaggerated when DEN was combined with fulvestrant (F) compared to non-DEN treated rats. The OVX rats showed higher insults than SHAM rats. The tapering impact on these parameters was clear in OVX rats that received estradiol benzoate (EB), silymarin (S) or orlistat (ORS). The immunohistochemistry and/or Western blot analysis of liver tissues showed a prominent increase in fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) expressions in OVX and SHAM rats who received DEN and/ or F compared to SHAM rats. In contrast to S, treatment of OVX rats with EB mitigated DEN-induced expression of FASN and CD36 in liver tissue, while ORS improved DEN-induced expression of FASN. In conclusion, the protective effect against HCC was mediated via estrogen receptor alpha (ER-α) which abrogates its downstream genes involved in lipid metabolism namely FASN and CD36 depriving the tumor from survival vital energy source. In addition, ORS induced similar mitigating effect against DEN-induced HCC which could be attributed to FASN inhibition and anti-inflammatory effect. Furthermore, S alleviated DEN-induced HCC, independent of its estrogenic effect.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Feminino , Ratos , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina/toxicidade , Dietilnitrosamina/metabolismo , Estrogênios/metabolismo , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Interleucina-6/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Receptores de Estrogênio/metabolismo
4.
Chem Res Toxicol ; 36(12): 1921-1929, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37983188

RESUMO

Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.


Assuntos
Neoplasias Colorretais , O(6)-Metilguanina-DNA Metiltransferase , Humanos , Domínio Catalítico , Cisteína , DNA/química , Reparo do DNA , Espectrometria de Massas , O(6)-Metilguanina-DNA Metiltransferase/genética , Oligodesoxirribonucleotídeos/química , Peptídeos
5.
Front Pharmacol ; 14: 1239025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841914

RESUMO

Ulcerative colitis (UC) is a chronic relapsing inflammatory disease of the colorectal area that demonstrates a dramatically increasing incidence worldwide. This study provides novel insights into the capacity of the exogenous ß-hydroxybutyrate and ketogenic diet (KD) consumption to alleviate dextran sodium sulfate (DSS)-induced UC in rats. Remarkably, both interventions attenuated disease activity and colon weight-to-length ratio, and improved macro and microstructures of the damaged colon. Importantly, both ß-hydroxybutyrate and KD curbed the DSS-induced aberrant NLRP3 inflammasome activation as observed in mRNA and protein expression analysis. Additionally, inhibition of the NLRP3/NGSDMD-mediated pyroptosis was detected in response to both regimens. In parallel, these modalities attenuated caspase-1 and its associated consequences of IL-1ß and IL-18 overproduction. They also mitigated apoptosis as indicated by the inactivation of caspase-3. The anti-inflammatory effects of BHB and KD were confirmed by the reported decline in the levels of inflammatory markers including MPO, NFκB, IL-6, and TNF-α. Moreover, these interventions exhibited antioxidative properties by reducing ROS production and improving antioxidative enzymes. Their effectiveness in mitigating UC was also evident in the renovation of normal intestinal epithelial barrier function, as shown by correcting the discrepancies in the levels of tight junction proteins ZO-1, OCLN, and CLDN5. Furthermore, their effects on the intestinal microbiota homeostasis were investigated. In terms of autophagy, exogenous ß-hydroxybutyrate upregulated BECN-1 and downregulated p62, which may account for its superiority over KD in attenuating colonic damage. In conclusion, this study provides experimental evidence supporting the potential therapeutic use of ß-hydroxybutyrate or ß-hydroxybutyrate-boosting regimens in UC.

6.
Inflammopharmacology ; 31(5): 2719-2729, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458952

RESUMO

Necroptosis, a programmed form of necrotic cell death carried out by receptor-interacting serine/threonine protein kinase 1 (RIPK1) and RIPK3, has been found to be implicated in the pathogenesis of Alzheimer's disease (AD). An FDA-approved anti-cancer drug, pazopanib, is reported to possess potent inhibitory effect against necroptosis via interfering with RIPK1. So far, there are no existing data on the influence of pazopanib on necroptotic pathway in AD. Thus, this study was designed to explore the impact of pazopanib on cognitive impairment provoked by ovariectomy (OVX) together with D-galactose (D-Gal) administration in rats and to scrutinize the putative signaling pathways underlying pazopanib-induced effects. Animals were allocated into four groups; the first and second groups were exposed to sham operation and administered normal saline and pazopanib (5 mg/kg/day, i.p.), respectively, for 6 weeks, while the third and fourth groups underwent OVX then were injected with D-Gal (150 mg/kg/day, i.p.); concomitantly with pazopanib in the fourth group for 6 weeks. Pazopanib ameliorated cognitive deficits as manifested by improved performance in the Morris water maze besides reversing the histological abnormalities. Pazopanib produced a significant decline in p-Tau and amyloid beta (Aß) plaques. The neuroprotective effect of pazopanib was revealed by hampering neuroinflammation, mitigating neuronal death and suppressing RIPK1/RIPK3/MLKL necroptosis signaling pathway. Accordingly, hindering neuroinflammation and the necroptotic RIPK1/RIPK3/MLKL pathway could contribute to the neuroprotective effect of pazopanib in D-Gal/OVX rat model. Therefore, this study reveals pazopanib as a valuable therapeutic agent in AD that warrants future inspection to provide further data regarding its neuroprotective effect.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Feminino , Ratos , Animais , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Galactose/farmacologia , Necroptose , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Transdução de Sinais , Cognição , Apoptose
7.
Biomed Pharmacother ; 158: 114196, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916405

RESUMO

Hepatocellular carcinoma (HCC) is the third foremost cause of cancer-related deaths. HCC has a very bad prognosis because it is asymptomatic in the early stages, resulting in a late diagnosis, and it is highly resistant to conventional chemotherapy. Such chemotherapies have been proven disappointing because they provide extremely low survival benefits. This study discloses that the STAT3/HIF-1α is an auspicious therapeutic attack site for conceivable repression of HCC development. A site that can be targeted by simultaneous administration of a STAT3 inhibitor in the context of HSP90 inhibition. 17-DMAG binds to HSP90 and constrains its function, resulting in the degradation of HSP90 client proteins HIF-1α and STAT3. Hypoxia recruits STAT3/HIF-1α complex within the VEGF promoter. Additionally, it was acknowledged that STAT3 is an essential mediator of VEGF transcription by direct binding to its promoter. Furthermore, it induces HIF-1α stability and enhances its transcriptional activity. Herein, we revealed that the combination therapy using 17-DMAG and nifuroxazide, a STAT3 inhibitor, repressed the diethylnitrosamine-induced alterations in the structure of the liver. This effect was mediated via decreasing the levels of the HSP90 client proteins HIF-1α and pSTAT3 resulting in the suppression of the STAT3/HIF-1α complex transcriptional activity. To conclude, 17-DMAG/NFXZD combination therapy-induced disruption in the STAT3/HIF-1α loop led to a potential antiangiogenic activity and showed apoptotic potential by inhibiting autophagy and inducing ROS/apoptosis signaling. Additionally, this combination therapy exhibited promising survival prolongation in mice with HCC. Consequently, the use of 17-DMAG/NFXZD renders an inspirational perspective in managing HCC. However, further investigations are compulsory.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia
8.
Biomed Pharmacother ; 161: 114553, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934553

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with a poor prognosis. There is currently no definitive cure for IPF. The present study establishes a platform for the development of a novel therapeutic approach for the treatment of PF using the atypical antidepressant, mirtazapine. In the endotracheal bleomycin rat model, mirtazapine interfered with the activation of NLRP3 inflammasome via downregulating the NLRP3 on the gene and protein expression levels. Accordingly, the downstream mediators IL-1ß and IL-18 were repressed. Such observation is potentially a direct result of the reported improvement in oxidative stress. Additionally, mirtazapine corrected the bleomycin-induced disparities in the levels of the fibrogenic mediators TGF-ß, PDGF-BB, and TIMP-1, in consequence, the lung content of hydroxyproline and the expression of α-SMA were reduced. Besides, mirtazapine curbed the ICAM-1 and the chemotactic cytokines MCP-1 and CXCL4. This protective property of mirtazapine resulted in improving the BALF total and differential cell counts, diminishing LDH activity, and reducing the BALF total protein. Moreover, the inflammation and fibrosis scores were accordingly lower. To conclude, we reveal for the first time the efficacy of mirtazapine as a potential treatment for PF. The combination of social isolation, sleep problems, breathing difficulties, and fear of death can lead to psychological distress and depression in patients with IPF. Hence, mirtazapine is a promising treatment option that may improve the prognosis for IPF patients due to its antifibrotic effects, as well as its ability to alleviate depressive episodes.


Assuntos
Antidepressivos de Segunda Geração , Fibrose Pulmonar Idiopática , Ratos , Animais , Inflamassomos/metabolismo , Mirtazapina/metabolismo , Mirtazapina/farmacologia , Antidepressivos de Segunda Geração/metabolismo , Antidepressivos de Segunda Geração/farmacologia , Bleomicina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pulmão , Fibrose , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Antidepressivos/farmacologia
9.
J Enzyme Inhib Med Chem ; 38(1): 2157411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629449

RESUMO

Mutant isocitrate dehydrogenase (IDH) 2 "IDH2m" acquires a neo-enzymatic activity reducing α-ketoglutarate to an oncometabolite, D-2-hydroxyglutarate (2-HG). Three s-triazine series were designed and synthesised using enasidenib as a lead compound. In vitro anticancer screening via National Cancer Institute "NCI" revealed that analogues 6a, 6c, 6d, 7g, and 7l were most potent, with mean growth inhibition percentage "GI%" = 66.07, 66.00, 53.70, 35.10, and 81.15, respectively, followed by five-dose screening. Compounds 6c, 6e, and 7c were established as the best IDH2R140Q inhibitors compared to enasidenib, reporting IC50 = 101.70, 67.01, 88.93, and 75.51 nM, respectively. More importantly, 6c, 6e, and 7c displayed poor activity against the wild-type IDH2, IC50 = 2928, 2295, and 3128 nM, respectively, which implementing high selectivity and accordingly safety. Furthermore, 6c was screened for cell cycle arrest, apoptosis induction, and western blot analysis. Finally, computational tools were applied to predict physicochemical properties and binding poses in IDH2R140Q allosteric site.


Assuntos
Antineoplásicos , Isocitrato Desidrogenase , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Mutação , Antineoplásicos/farmacologia , Triazinas/farmacologia , Triazinas/química
10.
Biomed Pharmacother ; 154: 113651, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36081290

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory life-threatening and premalignant disorder with no cure that even might end up with surgical removal of a large section or even all of the colon. It is characterized by relapsing-remitting courses of intestinal inflammation and mucosal damage in which oxidative stress and exaggerated inflammatory response play a significant role. Most of the current medications to maintain remission are symptomatic and have many adverse reactions. Therefore, the potential for improved management of patients with UC continues to increase. Yet, the benefits of using the antiarthritic agent diacetylrhein to counteract inflammation in UC are still obscure. Hence, our study was designed to explore its potential role in UC using a model of dextran sodium sulfate-induced acute colitis in rats. Our results revealed that diacetylrhein targeted the NLRP3 and inhibited the inflammasome assembly. Consequently, caspase-1 activity and the inflammatory cytokines IL-1ß and IL-18 were inhibited leading to a curbed pyroptosis process. Additionally, diacetylrhein revealed a significant antiapoptotic potential as revealed by the levels of pro-apoptotic and anti-apoptotic proteins. Concomitant to these effects, diacetylrhein also interrupted NFκB signals leading to improved microscopic features of inflamed colon and decreased colon weight to length ratio, indices of disease activity, and macroscopic damage. Additionally, a reduction in the myeloperoxidase activity, IL-6, and TGF-ß alongside an increase in the gene expression of Ocln and ZO-1 were detected. To conclude diacetylrhein showed a significant antioxidant and anti-inflammatory potential and therefore might represent a promising agent in the management of acute UC.


Assuntos
Colite Ulcerativa , Colite , Animais , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamação/metabolismo , Ratos , Sulfatos
11.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35455425

RESUMO

Breast cancer is the most common malignancy worldwide; therefore, the development of new anticancer agents is essential for improved tumor control. By adopting the pharmacophore hybridization approach, two series of 7-hydroxyl-4-methylcoumarin hybridized with thiosemicarbazone (V-VI) and thiazolidin-4-one moieties (VII-VIII) were prepared. The in vitro anticancer activity was assessed against MCF-7 cells adopting the MTT assay. Nine compounds showed significant cytotoxicity. The most promising compound, VIIb, induced remarkable cytotoxicity (IC50 of 1.03 + 0.05 µM). Further investigations were conducted to explore its pro-apoptotic activity demonstrating S-phase cell cycle arrest. Apoptosis rates following VIIb treatment revealed a 5-fold and 100-fold increase in early and late apoptotic cells, correspondingly. Moreover, our results showed caspase-9 dependent apoptosis induction as manifested by an 8-fold increase in caspase-9 level following VIIb treatment. Mechanistically, VIIb was found to target the PI3K-α/Akt-1 axis, as evidenced by enzyme inhibition assay results reporting significant inhibition of examined enzymes. These findings were confirmed by Western blot results indicating the ability of VIIb to repress levels of Cyclin D1, p-PI3K, and p-Akt. Furthermore, docking studies showed that VIIb has a binding affinity with the PI3K binding site higher than the original ligands X6K. Our results suggest that VIIb has pharmacological potential as a promising anti-cancer compound by the inhibition of the PI3K/Akt axis.

12.
J Enzyme Inhib Med Chem ; 37(1): 895-911, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35345960

RESUMO

A novel series of 4-(4-Methoxyphenyl)-2-(methylthio)pyrimidine-5-carbonitrile was developed linked to an aromatic moiety via N-containing bridge and then evaluated for their cytotoxic activity against MCF-7 and K562 cell lines. Seven compounds exhibited the highest activity against both cell lines where compounds 4d and 7f were the most active against K562 cell line. Exploring their molecular mechanisms by enzyme inhibition assay on PI3Kδ/γ and AKT-1 showed that compound 7f was promising more than 4d with IC50 = 6.99 ± 0.36, 4.01 ± 0.55, and 3.36 ± 0.17 uM, respectively. Also, flowcytometric analysis revealed that 7f caused cell cycle arrest at S-phase followed by caspase 3 dependent apoptosis induction. Mechanistically, compound 7f proved to modulate the expression of PI3K, p-PI3K, AKT, p-AKT, Cyclin D1, and NFΚß. Furthermore, in-vivo toxicity study indicated good safety profile for 7f. These findings suggest that the trimethoxy derivative 7f has strong potential as a multi-acting inhibitor on PI3K/AKT axis targeting breast cancer and leukaemia.


Assuntos
Antineoplásicos , Leucemia , Nitrilas , Pirimidinas , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3 , Ciclina D1 , Humanos , Células K562 , Leucemia/tratamento farmacológico , Leucemia/patologia , Células MCF-7 , NF-kappa B , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Pirimidinas/farmacologia
13.
Biomed Pharmacother ; 148: 112723, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35202914

RESUMO

Pulmonary fibrosis (PF) is a life-threatening disorder with a very poor prognosis. Because of the complexity of PF pathological mechanisms, filling such an unmet medical need is challenging. A number of pulmonary diseases have been linked to the activation of NF-κB and the NLRP3 inflammasome. Coomassie brilliant blue G-250 (CBBG) is proved to be a safe highly selective P2×7R antagonist with promising consequent inactivation of NLRP3 inflammasome. This is the first report to investigate the effect of CBBG on the bleomycin-induced lung fibrosis in rats. Our findings revealed that CBBG resulted in a significant improvement in histological features and oxidative status biomarkers of bleomycin-exposed lung tissue. Additionally, CBBG repressed collagen deposition as indicated after the analysis of hydroxyproline, TGF-ß, PDGF-BB, TIMP-1, MMP-9, Col1a1, SMA and ICAM-1. It also exhibited anti-inflammatory potential as revealed by the determination of TNF-α, IL-1ß, IL-18, MCP-1 in the lung tissue. In the bronchoalveolar lavage, the total protein and the LDH activity were substantially reduced. The lung protective effects of CBBG might be attributed on the one hand to the inhibition of NLRP3 inflammasome and on the other hand to the inactivation of NF-κB. Decreased levels of phospho-p65 and its DNA-binding activity as well as the analysis of TLR4 confirmed NF-κB inactivation. Caspase-1 activity is suppressed as a consequence of inhibiting NLRP3 inflammasome assembly. To conclude, CBBG may act as a primary or adjuvant therapy for the management of PF and therefore it may pose an opportunity for a novel approach to an unmet medical need.


Assuntos
NF-kappa B , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Ratos , Corantes de Rosanilina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA