Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 43(7): e2100794, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35085414

RESUMO

Preparation of low density monolithic and free-standing organic-inorganic hybrid aerogels of various properties is demonstrated using green chemistry from a biosafe natural source (flaxseed mucilage) and freeze-casting and subsequent freeze drying. Bio-aerogels, luminescent aerogels, and magneto-responsive aerogels are obtained by combination of the flaxseed mucilage with different types of nanoparticles. Moreover, the aerogels are investigated as possible drug release systems using curcumin as a model. Various characterization techniques like thermogravimetric analysis, nitrogen physisorption, electron microscopy, UV/Vis absorption, and emission spectroscopy, bulk density, and mechanical measurements, as well as in vitro release profile measurements, are employed to investigate the obtained materials. The flaxseed-inspired organic-inorganic hybrid aerogels exhibit ultra-low densities as low as 5.6 mg cm-3 for 0.5% (w/v) the mucilage polymer, a specific surface area of 4 to 20 m2 g-1 , high oil absorption capacity (23 g g-1 ), and prominent compressibility. The natural biopolymer technique leads to low cost and biocompatible functional lightweight materials with tunable properties (physicochemical and mechanical) and significant potential for applications as supporting or stimuli responsive materials, carriers, reactors, microwave- and electromagnetic radiation protective (absorbing)-materials, as well as in drug delivery and oil absorption.


Assuntos
Linho , Nanopartículas , Liberação Controlada de Fármacos , Géis/química , Porosidade
2.
ACS Appl Nano Mater ; 4(7): 6678-6688, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34327308

RESUMO

Macroscopic materials with nanoscopic properties have recently been synthesized by self-assembling defined nanoparticles to form self-supported networks, so-called aerogels. Motivated by the promising properties of this class of materials, the search for versatile routes toward the controlled assembly of presynthesized nanoparticles into such ultralight macroscopic materials has become a great interest. Overcoating procedures of colloidal nanoparticles with polymers offer versatile means to produce aerogels from nanoparticles, regardless of their size, shape, or properties while retaining their original characteristics. Herein, we report on the surface modification and assembly of various building blocks: photoluminescent nanorods, magnetic nanospheres, and plasmonic nanocubes with particle sizes between 5 and 40 nm. The polymer employed for the coating was poly(isobutylene-alt-maleic anhydride) modified with 1-dodecylamine side chains. The amphiphilic character of the polymer facilitates the stability of the nanocrystals in aqueous media. Hydrogels are prepared via triggering the colloidally stable solutions, with aqueous cations acting as linkers between the functional groups of the polymer shell. Upon supercritical drying, the hydrogels are successfully converted into macroscopic aerogels with highly porous, open structure. Due to the noninvasive preparation method, the nanoscopic properties of the building blocks are retained in the monolithic aerogels, leading to the powerful transfer of these properties to the macroscale. The open pore system, the universality of the polymer-coating strategy, and the large accessibility of the network make these gel structures promising biosensing platforms. Functionalizing the polymer shell with biomolecules opens up the possibility to utilize the nanoscopic properties of the building blocks in fluorescent probing, magnetoresistive sensing, and plasmonic-driven thermal sensing.

3.
Sci Rep ; 11(1): 6443, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742032

RESUMO

Advances in nanofabrication methods have enabled the tailoring of new strategies towards the controlled production of nanoparticles with attractive applications in healthcare. In many cases, their characterisation remains a big challenge, particularly for small-sized functional nanoparticles of 5 nm diameter or smaller, where current particle sizing techniques struggle to provide the required sensitivity and accuracy. There is a clear need for the development of new reliable characterisation approaches for the physico-chemical characterisation of nanoparticles with significant accuracy, particularly for the analysis of the particles in the presence of complex biological fluids. Herein, we show that the Differential Centrifugal Sedimentation can be utilised as a high-precision tool for the reliable characterisation of functional nanoparticles of different materials. We report a method to correlate the sedimentation shift with the polymer and biomolecule adsorption on the nanoparticle surface, validating the developed core-shell model. We also highlight its limit when measuring nanoparticles of smaller size and the need to use several complementary methods when characterising nanoparticle corona complexes.

4.
Nanotoxicology ; 11(2): 289-303, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248594

RESUMO

Water ecosystems represent main targets of unintentional contamination of nanomaterials, due to industrial waste or other anthropogenic activities. Nanoparticle insult to living organisms may occur in a sequential way, first by chemical interactions of the material with the target membrane, then by progressive internalisation and interaction with cellular structures and organelles. These events trigger a signal transduction, through which cells modulate molecular pathway in order to respond and survive to the external elicitation. Therefore, the analysis of the global changes of the molecular machinery, possibly induced in an organism upon exposure to a given nanomaterial, may provide unique clues for proper and exhaustive risk assessment. Here, we tested the impact of core/shell CdSe/ZnS QDs coated by a positively charged polymer on two aquatic species, the polyp Hydra vulgaris and the coral S. pistillata, representative of freshwater and sea habitats, respectively. By using reliable approaches based on animal behaviour and physiology together with a whole transcriptomic profiling, we determined several toxicity endpoints. Despite the difference in the efficiency of uptake, both species were severely affected by QD treatment, resulting in dramatic morphological damages and tissue bleaching. Global transcriptional changes were also detected in both organisms, but presenting different temporal dynamics, suggesting both common and divergent functional responses in the two sentinel organisms. Due to the striking conservation of structure and genomic organisation among animals throughout evolution, our expression profiling offers new clues to identify novel molecular markers and pathways for comparative transcriptomics of nanotoxicity.


Assuntos
Antozoários/efeitos dos fármacos , Compostos de Cádmio/toxicidade , Água Doce/química , Hydra/efeitos dos fármacos , Pontos Quânticos/toxicidade , Compostos de Selênio/toxicidade , Compostos de Zinco/toxicidade , Animais , Antozoários/genética , Antozoários/metabolismo , Compostos de Cádmio/química , Coloides , Endocitose/efeitos dos fármacos , Perfilação da Expressão Gênica , Hydra/genética , Hydra/metabolismo , Pontos Quânticos/química , Compostos de Selênio/química , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos , Compostos de Zinco/química
5.
Nanotoxicology ; 10(9): 1318-28, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27416974

RESUMO

While substantial progress has been achieved in the design of more biocompatible nanoparticles (NP), detailed data are required on the precise interactions of NPs and their environment for more reliable interpretation of toxicity results. Therefore, this study aims to investigate the interaction of two quantum dots (QDs) of the same core material CdSe/ZnS coated with two different amphiphilic polymers, with two well-established mammalian cell lines representing possible sites of QD accumulation. Results are linked to either extracellular QD concentrations (given dose) or cellular QD levels (number of internalized particles). In this study, QD internalization, effects on cellular homeostasis, and consequent inflammatory and cytoskeletal alterations caused by these QDs were explored. Fluorescence imaging techniques, including; image-based flow cytometry, confocal microscopy and high-content imaging with the InCell analyzer were used in a multiparametric methodology to evaluate cell viability, induction of oxidative stress, mitochondrial health, cell cytoskeletal functionality and changes in cellular morphology. Gene expression arrays were also carried out on 168 key genes involved in the cytoskeletal architecture and inflammatory pathway accompanied with the analysis of focal adhesions as key markers for actin-mediated signaling. Our results show distinct differences between the PMA and PTMAEMA-stat-PLMA coated QDs, which could mainly be attributed to differences in their cellular uptake levels. The toxicity profiles of both QD types changed drastically depending on whether effects were expressed in terms of given dose or internalized particles. Both QDs triggered alterations to important but different genes, most remarkably the up-regulation of tumor suppression and necrosis genes and the down regulation of angiogenesis and metastasis genes at sub-cytotoxic concentrations of these QDs.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Pontos Quânticos/toxicidade , Compostos de Cádmio/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citometria de Fluxo , Humanos , Microscopia Confocal , Estresse Oxidativo/genética , Polímeros/química , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/química , Espectrofotometria Atômica , Sulfetos/química , Propriedades de Superfície , Compostos de Zinco/química
6.
J Inorg Biochem ; 153: 334-338, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26387023

RESUMO

The influence of the surface charge and the state of agglomeration of ZnO nanoparticles on cellular uptake and viability are investigated. For this purpose, ZnO nanoparticles were synthesized by colloidal routes and their physicochemical properties were investigated in detail. Three different surface modifications were investigated, involving coatings with the amphiphilic polymer poly(isobutylene-alt-maleic anhydride)-graft-dodecyl, mercaptoundecanoic acid, and L-arginine, which provide the nanoparticles with either a negative or a positive zeta-potential. The hydrodynamic diameters and zeta-potentials of all three nanoparticle species were investigated at different pH values and NaCl concentrations by means of dynamic light scattering and laser Doppler anemometry, respectively. The three differently modified ZnO nanoparticle species of similar sizes were also investigated in respect to their cellular uptake by 3T3 fibroblasts and HeLa cells, and their effect on cell viability.


Assuntos
Nanopartículas Metálicas/química , Óxido de Zinco/química , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos/química , Hidrodinâmica , Anidridos Maleicos/química , Nanopartículas Metálicas/toxicidade , Camundongos , Polímeros/química , Eletricidade Estática , Compostos de Sulfidrila/química
7.
Nat Nanotechnol ; 10(7): 619-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26076469

RESUMO

Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles ((198)Au) and engineered an (111)In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for (198)Au and (111)In showed partial removal of the polymer shell in vivo. While (198)Au accumulates mostly in the liver, part of the (111)In shows a non-particulate biodistribution similar to intravenous injection of chelated (111)In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.


Assuntos
Materiais Revestidos Biocompatíveis/química , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Polímeros/química , Vísceras/química , Animais , Feminino , Especificidade de Órgãos , Tamanho da Partícula , Ratos , Ratos Endogâmicos WKY , Distribuição Tecidual
8.
Acta Biomater ; 10(2): 732-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24121195

RESUMO

Colloidal semiconductor nanoparticles (quantum dots) have attracted a lot of interest in technological and biomedical research, given their potent fluorescent properties. However, the use of heavy-metal-containing nanoparticles remains an issue of debate. The possible toxic effects of quantum dots remain a hot research topic and several questions such as possible intracellular degradation of quantum dots and the effect thereof on both cell viability and particle functionality remain unresolved. In the present work, amphiphilic polymer [corrected] coated CdSe/ZnS quantum dots were synthesized and characterized, after which their effects on cultured cells were evaluated using a multiparametric setup. The data reveal that the quantum dots are taken up through endocytosis and when exposed to the low pH of the endosomal structures, they partially degrade and release cadmium ions, which lowers their fluorescence intensity and augments particle toxicity. Using the multiparametric method, the quantum dots were evaluated at non-toxic doses in terms of their ability to visualize labeled cells for longer time periods. The data revealed that comparing different particles in terms of their applied dose is challenging, likely due to difficulties in obtaining accurate nanoparticle concentrations, but evaluating particle toxicity in terms of their biological functionality enables an easy and straightforward comparison.


Assuntos
Nanopartículas/química , Ácidos Polimetacrílicos/química , Pontos Quânticos/toxicidade , Testes de Toxicidade , Animais , Cádmio/química , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Fluorescência , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
9.
ACS Nano ; 7(8): 6555-62, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23808533

RESUMO

Upon incorporation of nanoparticles (NPs) into the body, they are exposed to biological fluids, and their interaction with the dissolved biomolecules leads to the formation of the so-called protein corona on the surface of the NPs. The composition of the corona plays a crucial role in the biological fate of the NPs. While the effects of various physicochemical parameters on the composition of the corona have been explored in depth, the role of temperature upon its formation has received much less attention. In this work, we have probed the effect of temperature on the protein composition on the surface of a set of NPs with various surface chemistries and electric charges. Our results indicate that the degree of protein coverage and the composition of the adsorbed proteins on the NPs' surface depend on the temperature at which the protein corona is formed. Also, the uptake of NPs is affected by the temperature. Temperature is, thus, an important parameter that needs to be carefully controlled in quantitative studies of bionano interactions.


Assuntos
Nanopartículas/química , Adsorção , Biotecnologia , Coloides/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Cinética , Magnetismo , Espectrometria de Massas , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Polímeros/química , Ligação Proteica , Proteínas/química , Albumina Sérica/química , Propriedades de Superfície , Temperatura
10.
Chemphyschem ; 14(10): 2338-42, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23589424

RESUMO

In this study, a photobioelectrochemical sensor for the detection of sarcosine is reported. For this purpose, CdSe/ZnS quantum dot (QD) modified electrodes are prepared and the oxygen-dependent photocurrent is evaluated under illumination. By using sarcosine oxidase (SOD), the photocurrent can be suppressed because of biocatalytic oxygen reduction. For the construction of a sensor, SOD is immobilised on the QDs by means of the polyelectrolyte poly(allylamine hydrochloride) (PAH). Multi-layer systems have been built up to six bilayers through electrostatic interactions. The assembly can be verified by surface plasmon resonance measurements. By varying the number of layers, the influence of the amount of enzyme on the sensitivity of the sensor can be shown. The [SOD/PAH]6-layer system results in a signal change of 0.041% µM(-1) in the linear range from 100 µM to 1 mM of sarcosine.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Pontos Quânticos , Sarcosina Oxidase/metabolismo , Biocatálise , Técnicas Biossensoriais/instrumentação , Compostos de Cádmio/química , Compostos de Cádmio/metabolismo , Técnicas Eletroquímicas/instrumentação , Eletrodos , Modelos Moleculares , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Processos Fotoquímicos , Poliaminas/química , Poliaminas/metabolismo , Sarcosina/análise , Sarcosina Oxidase/química , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Sulfato de Zinco/química , Sulfato de Zinco/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-23451718

RESUMO

Sensing and imaging with fluorescent, plasmonic, and magnetic colloidal nano- and microparticles have improved during the past decade. In this review, we describe the concepts and applications of how these techniques can be used in the multiplexed mode, that is, sensing of several analytes in parallel or imaging of several labels in parallel.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas , DNA/análise , Técnicas Eletroquímicas , Humanos , Imunoensaio/métodos , Magnetismo , Microscopia de Fluorescência , Óptica e Fotônica , Pontos Quânticos , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície
12.
Artigo em Inglês | MEDLINE | ID: mdl-23335558

RESUMO

Engineered nanomaterials offer exciting opportunities for 'smart' drug delivery and in vivo imaging of disease processes, as well as in regenerative medicine. The ability to manipulate matter at the nanoscale enables many new properties that are both desirable and exploitable, but the same properties could also give rise to unexpected toxicities that may adversely affect human health. Understanding the physicochemical properties that drive toxicological outcomes is a formidable challenge as it is not trivial to separate and, hence, to pinpoint individual material characteristics of nanomaterials. In addition, nanomaterials that interact with biological systems are likely to acquire a surface corona of biomolecules that may dictate their biological behavior. Indeed, we propose that it is the combination of material-intrinsic properties (the 'synthetic identity') and context-dependent properties determined, in part, by the bio-corona of a given biological compartment (the 'biological identity') that will determine the interactions of engineered nanomaterials with cells and tissues and subsequent outcomes. The delineation of these entwined 'identities' of engineered nanomaterials constitutes the bridge between nanotoxicological research and nanomedicine.


Assuntos
Bioengenharia/métodos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Animais , Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA