Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 114(1): 35-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37530473

RESUMO

Global travel and trade in combination with climate change are expanding the geographic distribution of plant pathogens. The bacterium Xylella fastidiosa is a prime example. Native to the Americas, it has spread to Europe, Asia, and the Middle East. To assess the risk that pathogen introductions pose to crops in newly invaded areas, it is key to survey their diversity, host range, and disease incidence in relation to climatic conditions where they are already present. We performed a survey of X. fastidiosa in grapevine in Virginia using a combination of quantitative PCR, multilocus sequencing, and metagenomics. We also analyzed samples from deciduous trees with leaf scorch symptoms. X. fastidiosa subspecies fastidiosa was identified in grapevines in all regions of the state, even in Northern Virginia, where the temperature was below -9°C for 10 days per year on average in the years preceding sampling. Unexpectedly, we also found for the first time grapevine samples infected with X. fastidiosa subspecies multiplex (Xfm). The Xfm lineage found in grapevines had been previously isolated from blueberries in the Southeastern United States and was distinct from that found in deciduous trees in Virginia. The obtained results will be important for risk assessment of X. fastidiosa introductions in other parts of the world.


Assuntos
Doenças das Plantas , Xylella , Virginia , Doenças das Plantas/microbiologia , Xylella/genética , Árvores , Produtos Agrícolas
2.
Sci Rep ; 10(1): 13685, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792547

RESUMO

Fungal endophytes can influence production and post-harvest challenges in carrot, though the identity of these microbes as well as factors affecting their composition have not yet been determined, which prevents growers from managing these organisms to improve crop performance. Consequently, we characterized the endophytic mycobiome in the taproots of three carrot genotypes that vary in resistance to two pathogens grown in a trial comparing organic and conventional crop management using Illumina sequencing of the internal transcribed spacer (ITS) gene. A total of 1,480 individual operational taxonomic units (OTUs) were identified. Most were consistent across samples, indicating that they are part of a core mycobiome, though crop management influenced richness and diversity, likely in response to differences in soil properties. There were also differences in individual OTUs among genotypes and the nematode resistant genotype was most responsive to management system indicating that it has greater control over its endophytic mycobiome, which could potentially play a role in resistance. Members of the Ascomycota were most dominant, though the exact function of most taxa remains unclear. Future studies aimed at overcoming difficulties associated with isolating fungal endophytes are needed to identify these microbes at the species level and elucidate their specific functional roles.


Assuntos
Daucus carota/crescimento & desenvolvimento , Fungos/classificação , Análise de Sequência de DNA/métodos , Agricultura , Daucus carota/genética , Daucus carota/microbiologia , Endófitos , Fungos/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Micobioma , Filogenia , Raízes de Plantas/microbiologia
3.
PLoS One ; 15(6): e0233783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497087

RESUMO

Managing pests in carrot production is challenging. Endophytic microbes have been demonstrated to improve the health and productivity of many crops, but factors affecting endophyte dynamics in carrot is still not well understood. The goal of this study was to determine how crop management system and carrot genotype interact to affect the composition and potential of endophytes to mitigate disease caused by Alternaria dauci, an important carrot pathogen. Twenty-eight unique isolates were collected from the taproots of nine diverse genotypes of carrot grown in a long-term trial comparing organic and conventional management. Antagonistic activity was quantified using an in vitro assay, and potential for individual isolates to mitigate disease was evaluated in greenhouse trials using two carrot cultivars. Results confirm that carrot taproots are colonized by an abundant and diverse assortment of bacteria and fungi representing at least distinct 13 genera. Soils in the organic system had greater total organic matter, microbial biomass and activity than the conventional system and endophyte composition in taproots grown in this system were more abundant and diverse, and had greater antagonistic activity. Carrot genotype also affected endophyte abundance as well as potential for individual isolates to affect seed germination, seedling growth and tolerance to A. dauci. The benefits of endophytes on carrot growth were greatest when plants were subject to A. dauci stress, highlighting the importance of environmental conditions in the functional role of endophytes. Results of this study provide evidence that endophytes can play an important role in improving carrot performance and mediating resistance to A. dauci, and it may someday be possible to select for these beneficial plant-microbial relationships in carrot breeding programs. Implementing soil-building practices commonly used in organic farming systems has potential to promote these beneficial relationships and improve the health and productivity of carrot crops.


Assuntos
Alternaria/fisiologia , Produção Agrícola/métodos , Daucus carota/genética , Daucus carota/microbiologia , Endófitos/fisiologia , Genótipo , Doenças das Plantas/microbiologia , Proteção de Cultivos/métodos , Daucus carota/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Germinação , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA