Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Neurochem Res ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847909

RESUMO

Understanding the endocannabinoid system in C. elegans may offer insights into basic biological processes and potential therapeutic targets for managing pain and inflammation in human. It is well established that anandamide modulates pain perception by binding to cannabinoid and vanilloid receptors, regulating neurotransmitter release and neuronal activity. One objective of this study was to demonstrate the suitability of C. elegans as a model organism for assessing the antinociceptive properties of bioactive compounds and learning about the role of endocannabinoid system in C. elegans. The evaluation of the compound anandamide (AEA) revealed antinociceptive activity by impeding C. elegans nocifensive response to noxious heat. Proteomic and bioinformatic investigations uncovered several pathways activated by AEA. Enrichment analysis unveiled significant involvement of ion homeostasis pathways, which are crucial for maintaining neuronal function and synaptic transmission, suggesting AEA's impact on neurotransmitter release and synaptic plasticity. Additionally, pathways related to translation, protein synthesis, and mTORC1 signaling were enriched, highlighting potential mechanisms underlying AEA's antinociceptive effects. Thermal proteome profiling identified NPR-32 and NPR-19 as primary targets of AEA, along with OCR-2, Cathepsin B, Progranulin, Transthyretin, and ribosomal proteins. These findings suggest a complex interplay between AEA and various cellular processes implicated in nociceptive pathways and inflammation modulation. Further investigation into these interactions could provide valuable insights into the therapeutic potential of AEA and its targets for the management of pain-related conditions.

2.
Biomed Chromatogr ; 37(7): e5531, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36269018

RESUMO

Targeted mass spectrometry is extensively used for the quantitative measurement of various molecules present in complex matrices. It is certainly one of the most important analytical duties in a mass spectrometry laboratory. Systematic development of selected-reaction monitoring (SRM), multiple-reaction monitoring (MRM) and parallel-reaction monitoring (PRM) methods for targeted mass spectrometry-based analysis was performed without considering future opportunities. The advancement of hardware and software technologies has resulted in greater resolution, accuracy, speed and depth. For sure, SRM, MRM or PRM acquisitions can quantify molecules very accurately at trace levels. However, they do not provide datasets allowing future data mining. Obviously, we cannot truly quantify something that we do not know is there. However, using non-targeted data acquisition for target analysis, we can generate a MS1 and MS2 digital libraries of each sample, providing future proof datasets. This is instrumental for data mining following new questions potentially arising in time permitting new and deeper processing and interpretation. This perspective article provides thoughts on why we believe it is time to question the status quo in targeted mass spectrometry.


Assuntos
Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA