Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Brain Sci ; 14(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39199463

RESUMO

Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.

2.
Antioxidants (Basel) ; 13(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39199231

RESUMO

Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.

3.
Cells ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38994948

RESUMO

Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS: We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS: We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION: Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.


Assuntos
Astrócitos , Transtorno Autístico , Encéfalo , Metilação de DNA , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Neurônios , Humanos , Astrócitos/metabolismo , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Transtorno Autístico/genética , Transtorno Autístico/patologia , Transtorno Autístico/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Metilação de DNA/genética , Encéfalo/patologia , Encéfalo/metabolismo , Masculino , Feminino , Regiões Promotoras Genéticas/genética , Forma Celular , Criança , Regulação da Expressão Gênica , Proteína Reelina
4.
Brain Sci ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38539649

RESUMO

Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.

5.
Biomedicines ; 12(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398057

RESUMO

Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.

6.
Epigenomics ; 16(1): 57-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38088063

RESUMO

The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.


Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common age-related brain diseases. The incidence of AD is almost 20% in individuals over the age of 80 years, and the incidence of PD is 1­4% in individuals over the age of 60 years. Research scientists are studying various links among key factors involved in AD and PD pathogenesis, including diet, gut microbiota (communal bacteria living in our gut), neuroinflammation, epigenetic modifications (regulation of gene expression that is affected by environmental factors) and genetic changes to obtain greater insights into the mechanisms of disease development to design better therapeutics for these disabling diseases. The discovery of these relationships will provide opportunities to maintain favorable health via diet­microbiota­epigenetic modifications, since diet and surrounding environments play crucial roles in gut microbial alterations. Here, we discuss the interactions between destructive protein misfolding/aggregation in AD and PD, with neuroinflammation and epigenetic alterations that all are affected by nutrition, microbiota dysbiosis (imbalance), leaky gut (gut­blood barrier disruption) and internal or environmental toxins. We also present thought-provoking discussions and ideas about recent preventive/therapeutic approaches like special diets, probiotics, fecal microbiota transplantation and even specific antibiotics for preventing or improving neuropsychiatric symptoms in AD and PD.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doença de Parkinson , Humanos , Microbioma Gastrointestinal/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Epigenoma
7.
Genes (Basel) ; 14(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137038

RESUMO

Major depressive disorder (MDD) is a complex disorder and a leading cause of disability in 280 million people worldwide. Many environmental factors, such as microbes, drugs, and diet, are involved in the pathogenesis of depressive disorders. However, the underlying mechanisms of depression are complex and include the interaction of genetics with epigenetics and the host immune system. Modifications of the gut microbiome and its metabolites influence stress-related responses and social behavior in patients with depressive disorders by modulating the maturation of immune cells and neurogenesis in the brain mediated by epigenetic modifications. Here, we discuss the potential roles of a leaky gut in the development of depressive disorders via changes in gut microbiota-derived metabolites with epigenetic effects. Next, we will deliberate how altering the gut microbiome composition contributes to the development of depressive disorders via epigenetic alterations. In particular, we focus on how microbiota-derived metabolites such as butyrate as an epigenetic modifier, probiotics, maternal diet, polyphenols, drugs (e.g., antipsychotics, antidepressants, and antibiotics), and fecal microbiota transplantation could positively alleviate depressive-like behaviors by modulating the epigenetic landscape. Finally, we will discuss challenges associated with recent therapeutic approaches for depressive disorders via microbiome-related epigenetic shifts, as well as opportunities to tackle such problems.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Probióticos/uso terapêutico , Probióticos/farmacologia , Epigênese Genética
8.
J Mol Neurosci ; 73(9-10): 738-750, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668894

RESUMO

Discovery and validation of new, reliable diagnostic and predictive biomarkers for schizophrenia (SCZ) are an ongoing effort. Here, we assessed the mRNA expression and DNA methylation of the TCF4, MBP, and EGR1 genes in the blood of patients with SCZ and evaluated their relationships to psychopathology and cognitive impairments. Quantitative real-time PCR and quantitative methylation-specific PCR methods were used to assess the expression level and promoter DNA methylation status of these genes in 70 drug-free SCZ patients and 72 healthy controls. The correlation of molecular changes with psychopathology and cognitive performance of participants was evaluated. We observed downregulation of TCF4 and upregulation of MBP mRNA levels in SCZ cases, relative to controls in our study. DNA methylation status at the promoter region of TCF4 demonstrated an altered pattern in SCZ as well. Additionally, TCF4 mRNA levels were inversely correlated with PANSS and Stroop total errors and positively correlated with WAIS total score and working memory, consistent with previous studies by our group. In contrast, MBP mRNA level was significantly positively correlated with PANSS and Stroop total errors and inversely correlated with WAIS total score and working memory. These epigenetic and expression signatures can help to assemble a peripheral biomarker-based diagnostic panel for SCZ.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Humanos , Predisposição Genética para Doença , Metilação de DNA , Disfunção Cognitiva/genética , Expressão Gênica , Inteligência , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
9.
Nutrients ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571393

RESUMO

During aging, several tissues and biological systems undergo a progressive decline in function, leading to age-associated diseases such as neurodegenerative, inflammatory, metabolic, and cardiovascular diseases and cancer. In this review, we focus on the molecular underpinning of senescence and neurodegeneration related to age-associated brain diseases, in particular, Alzheimer's and Parkinson's diseases, along with introducing nutrients or phytochemicals that modulate age-associated molecular dysfunctions, potentially offering preventive or therapeutic benefits. Based on current knowledge, the dysregulation of microglia genes and neuroinflammation, telomere attrition, neuronal stem cell degradation, vascular system dysfunction, reactive oxygen species, loss of chromosome X inactivation in females, and gut microbiome dysbiosis have been seen to play pivotal roles in neurodegeneration in an interactive manner. There are several phytochemicals (e.g., curcumin, EGCG, fucoidan, galangin, astin C, apigenin, resveratrol, phytic acid, acacetin, daucosterol, silibinin, sulforaphane, withaferin A, and betulinic acid) that modulate the dysfunction of one or several key genes (e.g., TREM2, C3, C3aR1, TNFA, NF-kb, TGFB1&2, SIRT1&6, HMGB1, and STING) affected in the aged brain. Although phytochemicals have shown promise in slowing down the progression of age-related brain diseases, more studies to identify their efficacy, alone or in combinations, in preclinical systems can help to design novel nutritional strategies for the management of neurodegenerative diseases in humans.


Assuntos
Encefalopatias , Doenças Neurodegenerativas , Humanos , Idoso , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Envelhecimento , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo
10.
Genes (Basel) ; 14(7)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510410

RESUMO

Nutrition and metabolism modify epigenetic signatures like histone acetylation and DNA methylation. Histone acetylation and DNA methylation in the central nervous system (CNS) can be altered by bioactive nutrients and gut microbiome via the gut-brain axis, which in turn modulate neuronal activity and behavior. Notably, the gut microbiome, with more than 1000 bacterial species, collectively contains almost three million functional genes whose products interact with millions of human epigenetic marks and 30,000 genes in a dynamic manner. However, genetic makeup shapes gut microbiome composition, food/nutrient metabolism, and epigenetic landscape, as well. Here, we first discuss the effect of changes in the microbial structure and composition in shaping specific epigenetic alterations in the brain and their role in the onset and progression of major mental disorders. Afterward, potential interactions among maternal diet/environmental factors, nutrition, and gastrointestinal microbiome, and their roles in accelerating or delaying the onset of severe mental illnesses via epigenetic changes will be discussed. We also provide an overview of the association between the gut microbiome, oxidative stress, and inflammation through epigenetic mechanisms. Finally, we present some underlying mechanisms involved in mediating the influence of the gut microbiome and probiotics on mental health via epigenetic modifications.


Assuntos
Microbioma Gastrointestinal , Transtornos Mentais , Humanos , Microbioma Gastrointestinal/genética , Histonas/genética , Transtornos Mentais/genética , Dieta , Epigênese Genética
11.
Genes (Basel) ; 14(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37107654

RESUMO

The tissue-specific expression and epigenetic dysregulation of many genes in cells derived from the postmortem brains of patients have been reported to provide a fundamental biological framework for major mental diseases such as autism, schizophrenia, bipolar disorder, and major depression. However, until recently, the impact of non-neuronal brain cells, which arises due to cell-type-specific alterations, has not been adequately scrutinized; this is because of the absence of techniques that directly evaluate their functionality. With the emergence of single-cell technologies, such as RNA sequencing (RNA-seq) and other novel techniques, various studies have now started to uncover the cell-type-specific expression and DNA methylation regulation of many genes (e.g., TREM2, MECP2, SLC1A2, TGFB2, NTRK2, S100B, KCNJ10, and HMGB1, and several complement genes such as C1q, C3, C3R, and C4) in the non-neuronal brain cells involved in the pathogenesis of mental diseases. Additionally, several lines of experimental evidence indicate that inflammation and inflammation-induced oxidative stress, as well as many insidious/latent infectious elements including the gut microbiome, alter the expression status and the epigenetic landscapes of brain non-neuronal cells. Here, we present supporting evidence highlighting the importance of the contribution of the brain's non-neuronal cells (in particular, microglia and different types of astrocytes) in the pathogenesis of mental diseases. Furthermore, we also address the potential impacts of the gut microbiome in the dysfunction of enteric and brain glia, as well as astrocytes, which, in turn, may affect neuronal functions in mental disorders. Finally, we present evidence that supports that microbiota transplantations from the affected individuals or mice provoke the corresponding disease-like behavior in the recipient mice, while specific bacterial species may have beneficial effects.


Assuntos
Epigênese Genética , Transtornos Mentais , Animais , Camundongos , Epigênese Genética/genética , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
12.
Front Nutr ; 10: 1116278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969810

RESUMO

Introduction: Cognition decline is associated with aging and certain diseases, such as neurodegenerative or neuropsychiatric disorders, diabetes and chronic kidney disease. Inflammation/neuroinflammation is considered an important causal factor, and experimental evidence suggests that anti-inflammatory natural compounds may effectively prevent cognitive decline. The goal of this study was to evaluate the effects of two natural bioactive agents, oligo-lactic acid (LAP) and fermented soy extract (ImmunBalance, IMB), on cognition in an adenine-induced cognitive impairment mouse model and to investigate the modulation of related biomarkers. Methods: Male C57 black mice were randomly assigned into the following experimental groups and received the corresponding treatments for 2 weeks before the use of adenine for model development: (1) negative control; (2) model control: injection of adenine at 50 mg/kg daily for 4 weeks; (3, 4) IMB groups: adenine injection and IMB oral gavage at 250 and 1,000 mg/kg BW, respectively; and (5) LAP group: adenine injection and LAP oral gavage at 1,000 mg/kg BW. One week after the model was developed, mice were evaluated for cognitive performances by using Y maze test, novel object recognition test, open field test, and Barnes maze tests. At the end of the experiment, brain tissues and cecum fecal samples were collected for analysis of gene expression and gut microbiota. Results: Mice treated with LAP or IMB had significantly improved spatial working memory, spatial recognition memory (LAP only), novel object recognition, and spatial learning and memory, compared with those in the model group. Gene expression analysis showed that, among a panel of cognition related genes, six of them (ELOVL2, GLUT4, Nestein, SNCA, TGFB1, and TGFB2) were significantly altered in the model group. LAP treatment significantly reversed expression levels of inflammatory/neuroinflammatory genes (SNCA, TGFB1), and IMB significantly reversed expression levels of genes related to inflammation/neuroinflammation, neurogenesis, and energy metabolism (ELOVL2, GLUT4, Nestin, TGFB1, and TGFB2). The altered microbiome was attenuated only by IMB. Discussion: In conclusion, our data showed that LAP improved cognition associated with regulating biomarkers related to neuroinflammation and energy metabolism, whereas IMB improved cognition associated with regulating biomarkers related to neuroinflammation, energy metabolism, and neurogenesis, and modulating gut microbiota. Our results suggest that LAP and IMB may improve cognitive performance in mice via distinct mechanisms of action.

13.
Epigenomics ; 13(15): 1231-1245, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34318684

RESUMO

During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.


Assuntos
Transtorno Autístico/etiologia , Suscetibilidade a Doenças , Epigênese Genética , Variação Genética , Transtornos Mentais/etiologia , Transtorno Autístico/diagnóstico , Transtorno Autístico/tratamento farmacológico , Biomarcadores , Metilação de DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/tratamento farmacológico , MicroRNAs/genética , Fenótipo , Fatores de Risco
14.
Biomed Pharmacother ; 138: 111426, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33762124

RESUMO

WangShiBoChiWan (WSBCW) is a commonly used Chinese herbal medicine for the treatment of functional gastrointestinal disorders. However, its preclinical efficacy and the mechanisms of action have not been adequately studied. The goals of this study were to evaluate the effects of WSBCW on gastrointestinal health and modulation of related biomarkers. Female C57BL mice were randomly assigned into one of the experimental groups consisting of the control, drug controls, and WSBCW at 40, 120, and 360 mg/kg BW. Whole gut transit, small intestinal motility, and intestinal barrier permeability were determined. The castor oil-induced diarrhea mouse model was used to determine the effect of WSBCW on the diarrhea type of irritable bowel syndrome (IBS-D). WSBCW increased whole gut transit and intestinal motility, improved intestinal permeability in healthy animals and alleviated diarrhea symptoms in IBS-D mice. WSBCW upregulated intestinal junction proteins, increased the abundance of Bifidobacterium genus, Desulfovibrio genus and inhibited Bacteroides fragillis group in the gut microbiota, increased intestinal villi lengths, and decreased blood levels of inflammatory cytokines. Our study provided preclinical evidence to verify the effectiveness of WSBCW in gastrointestinal health and elucidate mechanistic insights. The results warrant further investigations to evaluate the therapeutic efficacy of WSBCW on gastrointestinal disorders, such as IBS and IBD.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Medicina Herbária/métodos , Mediadores da Inflamação/antagonistas & inibidores , Junções Íntimas/efeitos dos fármacos , Animais , Diarreia/tratamento farmacológico , Diarreia/fisiopatologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Microbioma Gastrointestinal/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Mediadores da Inflamação/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/fisiologia , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/fisiologia
15.
Nutrients ; 12(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784477

RESUMO

Chronic kidney disease (CKD) is a global epidemic with an increasing prevalence worldwide. Effective preventive strategies are urgently needed. This study aimed to investigate the effect of nutraceutical components, a fermented soybean product (ImmuBalance, IMB) and an oligo-lactic acid product (LAP), on the prevention of adenine-induced CKD in mice. Female C57BL/6 mice were randomly assigned into following experimental groups: negative control; model control; and models treated with IMB at 250 or 1000 mg/kg body weight (BW), LAP at 1000 or 2000 mg/kg BW, and IMB/LAP combinations. The CKD model was established by intraperitoneal injection of adenine daily for 4 weeks, and treatments started 2 weeks before adenine injection and ended after 10 weeks. Compared with the model control, the treatments did not significantly alter the body weight or food intake. Both IMB and LAP, especially their combination, significantly inhibited tubular dilation, tubulointerstitial degeneration or atrophy, interstitial chronic inflammation and acute inflammation in the kidneys of CKD mice, and significantly decreased serum cystatin C levels. IMB or LAP significantly reversed CKD-associated increases of circulating and kidney levels of inflammatory cytokines, circulating levels of kidney injury biomarkers, and kidney levels of stem cell biomarkers, and significantly reversed CKD-associated reduction of cecum Clostridium leptum group. Our results suggest that dietary supplementation of IMB or LAP may significantly delay the development and/or progression of CKD.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Glycine max , Ácido Láctico/administração & dosagem , Oligossacarídeos/química , Insuficiência Renal Crônica/tratamento farmacológico , Adenina , Animais , Biomarcadores/análise , Ceco/microbiologia , Clostridium/efeitos dos fármacos , Cistatina C/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Alimentos Fermentados , Inflamação , Rim/efeitos dos fármacos , Ácido Láctico/química , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais , Insuficiência Renal Crônica/induzido quimicamente
16.
Mol Cancer Res ; 18(3): 414-423, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932471

RESUMO

Deciphering molecular targets to enhance sensitivity to chemotherapy is becoming a priority for effectively treating cancers. Loss of function mutations of SMAD4 in colon cancer are associated with metastatic progression and resistance to 5-fluorouracil (5-FU), the most extensively used drug of almost all chemotherapy combinations used in the treatment of metastatic colon cancer. Here, we report that SMAD4 deficiency also confers resistance to irinotecan, another common chemotherapeutic frequently used alone or in combination with 5-FU against colon cancer. Mechanistically, we find that SMAD4 interacts with and inhibits RICTOR, a component of the mTORC2 complex, resulting in suppression of downstream effector phosphorylation of AKT at Serine 473. In silico meta-analysis of publicly available gene expression datasets derived from tumors indicates that lower levels of SMAD4 or higher levels of RICTOR/AKT, irrespective of the SMAD4 status, correlate with poor survival, suggesting them as strong prognostic biomarkers and targets for therapeutic intervention. Moreover, we find that overexpression of SMAD4 or depletion of RICTOR suppresses AKT signaling and increases sensitivity to irinotecan in SMAD4-deficient colon cancer cells. Consistent with these observations, pharmacologic inhibition of AKT sensitizes SMAD4-negative colon cancer cells to irinotecan in vitro and in vivo. Overall, our study suggests that hyperactivation of the mTORC2 pathway is a therapeutic vulnerability that could be exploited to sensitize SMAD4-negative colon cancer to irinotecan. IMPLICATIONS: Hyperactivation of the mTORC2 pathway in SMAD4-negative colon cancer provides a mechanistic rationale for targeted inhibition of mTORC2 or AKT as a distinctive combinatorial therapeutic opportunity with chemotherapy for colon cancer.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Irinotecano/uso terapêutico , Proteína Companheira de mTOR Insensível à Rapamicina/efeitos dos fármacos , Proteína Smad4/metabolismo , Animais , Neoplasias do Colo/mortalidade , Feminino , Humanos , Irinotecano/farmacologia , Camundongos , Camundongos Nus , Análise de Sobrevida
17.
Psychiatr Genet ; 30(1): 10-18, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31568068

RESUMO

INTRODUCTION: As schizophrenia is a complex mental disorder and the outcome of gene-gene-environmental interactions, there are different possible pathophysiological mechanisms in different schizophrenia subtypes corresponding to various risk factors. This study was aimed at examining the impact of one of the most likely interactions, that is, 'dopamine and stress', in schizophrenia pathogenesis. METHODS: Here, we investigated the interaction between 'war-related psychological trauma' without brain trauma and catechol-O-methyltransferase gene. Using real-time PCR analysis we measured catechol-O-methyltransferase gene expression level in the blood cells of 66 male subjects in four groups, namely veteran schizophrenia patients as 'stress-exposed schizophrenia' (S-schizophrenia), their healthy brothers as 'their genetically closest relatives' (S-siblings), schizophrenia patients without any history of significant stress as 'non-stress-exposed schizophrenia' (NoS-schizophrenia), and the control group. The results were analyzed by Relative Expression Software Tool 2009 software. RESULTS: The catechol-O-methyltransferase gene expression was not significantly different between the S-schizophrenia and NoS-schizophrenia groups. However, compared to the control group, the catechol-O-methyltransferase expression was significantly decreased in three groups of S-schizophrenia, their healthy siblings, and NoS-schizophrenia patients. CONCLUSION: This data supports that reduced blood catechol-O-methyltransferase expression, which may be associated with higher dopamine level, is involved both in stress-induced and non-stress-induced schizophrenia.


Assuntos
Catecol O-Metiltransferase/genética , Esquizofrenia/genética , Estresse Psicológico/genética , Adulto , Catecol O-Metiltransferase/sangue , Catecol O-Metiltransferase/metabolismo , Dopamina/sangue , Dopamina/metabolismo , Dopamina/fisiologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/metabolismo , Irmãos , Estresse Psicológico/metabolismo
18.
Cancer Biol Ther ; 20(8): 1113-1120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30922194

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer with poor prognosis due to lack of druggable targets such as hormone and growth factor receptors. Therefore, identification of targetable regulators such as miRNAs could provide new avenues for therapeutic applications. Here, we report that the expression of miR-4417 is suppressed during the progression of TNBC cells from non-malignant to the malignant stage. MiR-4417 is localized to chromosome 1p36, a region with high frequency of loss of heterozygosity in multiple cancers, and its biogenesis is DICER-dependent. Low expression of miR-4417 is significantly associated with worse prognosis in TNBC patients, while overexpression of miR-4417 is sufficient to inhibit migration and mammosphere formation of TNBC cells in vitro. Overall, our findings suggest miR-4417 exerts a tumor suppressive effect and thereby could serve as a prognostic biomarker and therapeutic tool against TNBC.


Assuntos
Biomarcadores Tumorais , Genes Supressores de Tumor , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Interferência de RNA , Neoplasias de Mama Triplo Negativas/diagnóstico
19.
Am J Med Genet B Neuropsychiatr Genet ; 180(2): 138-149, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30468562

RESUMO

Although the loss of brain laterality is one of the most consistent modalities in schizophrenia (SCZ) and bipolar disorder (BD), its molecular basis remains elusive. Our limited previous studies indicated that epigenetic modifications are key to the asymmetric transcriptomes of brain hemispheres. We used whole-genome expression microarrays to profile postmortem brain samples from subjects with SCZ, psychotic BD [BD[+]] or non-psychotic BD [BD(-)], or matched controls (10/group) and performed whole-genome DNA methylation (DNAM) profiling of the same samples (3-4/group) to identify pathways associated with SCZ or BD[+] and genes/sites susceptible to epigenetic regulation. qRT-PCR and quantitative DNAM analysis were employed to validate findings in larger sample sets (35/group). Gene Set Enrichment Analysis (GSEA) demonstrated that BMP signaling and astrocyte and cerebral cortex development are significantly (FDR q < 0.25) coordinately upregulated in both SCZ and BD[+], and glutamate signaling and TGFß signaling are significantly coordinately upregulated in SCZ. GSEA also indicated that collagens are downregulated in right versus left brain of controls, but not in SCZ or BD[+] patients. Ingenuity Pathway Analysis predicted that TGFB2 is an upstream regulator of these genes (p = .0012). While lateralized expression of TGFB2 in controls (p = .017) is associated with a corresponding change in DNAM (p ≤ .023), lateralized expression and DNAM of TGFB2 are absent in SCZ or BD. Loss of brain laterality in SCZ and BD corresponds to aberrant epigenetic regulation of TGFB2 and changes in TGFß signaling, indicating potential avenues for disease prevention/treatment.


Assuntos
Transtorno Bipolar/genética , Encéfalo/patologia , Esquizofrenia/genética , Adulto , Autopsia , Metilação de DNA/genética , Epigênese Genética/genética , Epigenoma/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Transtornos Psicóticos/genética , Transdução de Sinais/genética , Transcriptoma/genética , Fator de Crescimento Transformador beta/metabolismo , Sequenciamento Completo do Genoma/métodos
20.
Am J Med Genet B Neuropsychiatr Genet ; 174(6): 651-660, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691768

RESUMO

Major mental diseases such as autism, bipolar disorder, schizophrenia, and major depressive disorder are debilitating illnesses with complex etiologies. Recent findings show that the onset and development of these illnesses cannot be well described by the one-gene; one-disease approach. Instead, their clinical presentation is thought to result from the regulative interplay of a large number of genes. Even though the involvement of many genes are likely, up regulating and activation or down regulation and silencing of these genes by the environmental factors play a crucial role in contributing to their pathogenesis. Much of this interplay may be moderated by epigenetic changes. Similar to genetic mutations, epigenetic modifications such as DNA methylation, histone modifications, and RNA interference can influence gene expression and therefore may cause behavioral and neuronal changes observed in mental disorders. Environmental factors such as diet, gut microbiota, and infections have significant role in these epigenetic modifications. Studies show that bioactive nutrients and gut microbiota can alter either DNA methylation and histone signatures through a variety of mechanisms. Indeed, microbes within the human gut may play a significant role in the regulation of various elements of "gut-brain axis," via their influence on inflammatory cytokines and production of antimicrobial peptides that affect the epigenome through their involvement in generating short chain fatty acids, vitamin synthesis, and nutrient absorption. In addition, they may participate in-gut production of many common neurotransmitters. In this review we will consider the potential interactions of diet, gastrointestinal microbiome, inflammation, and epigenetic alterations in psychiatric disorders.


Assuntos
Epigenômica , Inflamação/complicações , Transtornos Mentais/etiologia , Transtornos Mentais/patologia , Microbiota , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA