Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 219: 106486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642864

RESUMO

New thermostable ß-1,3-1,4-glucanase (lichenase) designated as Blg29 was expressed and purified from a locally isolated alkaliphilic bacteria Bacillus lehensis G1. The genome sequence of B. lehensis predicted an open reading frame of Blg29 with a deduced of 249 amino acids and a molecular weight of 28.99 kDa. The gene encoding for Blg29 was successfully amplified via PCR and subsequently expressed as a recombinant protein using the E. coli expression system. Recombinant Blg29 was produced as a soluble form and further purified via immobilized metal ion affinity chromatography (IMAC). Based on biochemical characterization, recombinant Blg29 showed optimal activity at pH9 and temperature 60 °C respectively. This enzyme was stable for more than 2 h, incubated at 50 °C, and could withstand ∼50 % of its activity at 70 °C for an hour and a half. No significant effect on Blg29 was observed when incubated with metal ions except for a small increase with ion Ca2+. Blg29 showed high substrate activity towards lichenan where Vm, Km, Kcat, and kcat/Km values were 2040.82 µmolmin‾1mg‾1, 4.69 mg/mL, and 986.39 s‾1 and 210.32 mLs‾1mg‾1 respectively. The high thermostability and activity make this enzyme useable for a broad prospect in industry applications.


Assuntos
Bacillus , Proteínas de Bactérias , Estabilidade Enzimática , Escherichia coli , Proteínas Recombinantes , Bacillus/enzimologia , Bacillus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Clonagem Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/biossíntese , Expressão Gênica , Temperatura , Especificidade por Substrato
2.
Extremophiles ; 28(1): 15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300354

RESUMO

Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.


Assuntos
Basidiomycota , Saccharomyces cerevisiae , Arginase/genética , Basidiomycota/genética , Arginina , Escherichia coli
3.
Microbiol Resour Announc ; 11(10): e0061722, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36106889

RESUMO

Asia's paddy areas endure tropical and equatorial monsoon climates and are prone to drought stress. The drought-tolerant plant growth-promoting rhizobacterium (PGPR) strain Bacillus altitudinis UKM RB11 was isolated from upland paddy soil in Malaysia. Its 3.7-Mb genome sequence contains numerous genes involved with tolerance to drought and high temperatures and plant growth promotion.

4.
J Fungi (Basel) ; 8(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36012782

RESUMO

Ganoderma boninense is the major causal agent of basal stem rot (BSR) disease in oil palm, causing the progressive rot of the basal part of the stem. Despite its prominence, the key pathogenicity determinants for the aggressive nature of hemibiotrophic infection remain unknown. In this study, genome sequencing and the annotation of G. boninense T10 were carried out using the Illumina sequencing platform, and comparative genome analysis was performed with previously reported G. boninense strains (NJ3 and G3). The pan-secretome of G. boninense was constructed and comprised 937 core orthogroups, 243 accessory orthogroups, and 84 strain-specific orthogroups. In total, 320 core orthogroups were enriched with candidate effector proteins (CEPs) that could be classified as carbohydrate-active enzymes, hydrolases, and non-catalytic proteins. Differential expression analysis revealed an upregulation of five CEP genes that was linked to the suppression of PTI signaling cascade, while the downregulation of four CEP genes was linked to the inhibition of PTI by preventing host defense elicitation. Genome architecture analysis revealed the one-speed architecture of the G. boninense genome and the lack of preferential association of CEP genes to transposable elements. The findings obtained from this study aid in the characterization of pathogenicity determinants and molecular biomarkers of BSR disease.

5.
Biology (Basel) ; 11(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35205119

RESUMO

Plant pathogens are key threats to agriculture and global food security, causing various crop diseases that lead to massive economic losses. Palm oil is a commodity export of economic importance in Southeast Asia, especially in Malaysia and Indonesia. However, the sustainability of oil palm plantations and production is threatened by basal stem rot (BSR), a devastating disease predominantly caused by the fungus Ganoderma boninense Pat. In Malaysia, infected trees have been reported in nearly 60% of plantation areas, and economic losses are estimated to reach up to ~USD500 million a year. This review covers the current knowledge of the mechanisms utilized by G. boninense during infection and the methods used in the disease management to reduce BSR, including cultural practices, chemical treatments and antagonistic microorganism manipulations. Newer developments arising from multi-omics technologies such as whole-genome sequencing (WGS) and RNA sequencing (RNA-Seq) are also reviewed. Future directions are proposed to increase the understanding of G. boninense invasion mechanisms against oil palm. It is hoped that this review can contribute towards an improved disease management and a sustainable oil palm production in this region.

6.
Microorganisms ; 9(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34683390

RESUMO

The induction of highly conserved heat shock protein 70 (HSP70) is often related to a cellular response due to harmful stress or adverse life conditions. In this study, we determined the expression of Hsp70 genes in the Antarctic yeast, Glaciozyma antarctica, under different several thermal treatments for several exposure periods. The main aims of the present study were (1) to determine if stress-induced Hsp70 could be used to monitor the exposure of the yeast species G. antarctica to various types of thermal stress; (2) to analyze the structures of the G. antarctica HSP70 proteins using comparative modeling; and (3) to evaluate the relationship between the function and structure of HSP70 in G. antarctica. In this study, we managed to amplify and clone 2 Hsp70 genes from G. antarctica named GaHsp70-1 and GaHsp70-2. The cells of G. antarctica expressed significantly inducible Hsp70 genes after the heat and cold shock treatments. Interestingly, GaHsp70-1 showed 2-6-fold higher expression than GaHsp70-2 after the heat and cold exposure. ATP hydrolysis analysis on both G. antarctica HSP70s proved that these psychrophilic chaperones can perform activities in a wide range of temperatures, such as at 37, 25, 15, and 4 °C. The 3D structures of both HSP70s revealed several interesting findings, such as the substitution of a ß-sheet to loop in the N-terminal ATPase binding domain and some modest residue substitutions, which gave the proteins the flexibility to function at low temperatures and retain their functional activity at ambient temperatures. In conclusion, both analyzed HSP70s played important roles in the physiological adaptation of G. antarctica.

7.
Carbohydr Polym ; 267: 118159, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119133

RESUMO

Cross-linked enzyme aggregates (CLEAs) are influenced by mass diffusion limitations such as the degree of molecular cross-linking attained, which affects substrate accessibility. Thus, this study seeks to improve substrate accessibility using macromolecular cross-linkers in cross-linked levanase aggregates (CLLAs) formation for levan-type fructooligosaccharides (L-FOS) production. Dialdehyde starch-tapioca (DAST) was successfully developed and used to cross-link levanase to form CLLAs-D and with bovine serum albumin (BSA) to form CLLAs-DB which showed activity recoveries of 65.6% and 81.6%, respectively. After cross-linking, the pH (6-10) and thermal stability (30-40 °C) increased, and organic solvent tolerance resulted in the activation of CLLAs. Likewise, CLLAs-DB had higher substrate affinity and accessibility and a higher effectiveness factors than CLLAs-D. The total L-FOS yield of CLLAs-DB (78.9% (w/v)) was higher than that of CLLAs-D (62.4% (w/v)). Therefore, as a cross-linker, DAST may have application prospects as a promising and green biocatalyst for product formation.

8.
Biology (Basel) ; 9(10)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023069

RESUMO

The alternative sigma (σ) factor E, RpoE or HrpL, has been reported to be involved in stress- and pathogenicity-related transcription initiation in Escherichia coli and many other Gram-negative bacteria, including Erwinia spp. and Pseudomonas spp. A previous study identified the hrpL/rpoE transcript as one of the significant differentially expressed genes (DEGs) during early E. mallotivora infection in papaya and those data serve as the basis of the current project. Here, the full coding DNA sequence (CDS) of hrpL from E. mallotivora (EmhrpL) was determined to be 549 bp long, and it encoded a 21.3 kDa HrpL protein that possessed two highly conserved sigma-70 (σ70) motifs-σR2 and σR4. Nucleotide sequence alignment revealed the hrpL from E. mallotivora shared high sequence similarity to rpoE/hrpL from E. tracheiphila (83%), E. pyrifoliae (81%), and E. tasmaniensis (80%). Phylogenetics analysis indicated hrpL from E. mallotivora to be monophyletic with rpoEs/hrpLs from Pantoea vagans, E. herbicola, and E. tracheiphila. Structural analysis postulated that the E. mallotivora's alternative σ factor was non-transmembranic and was an extracytoplasmic function (ECF) protein-characteristics shared by other σ factors in different bacterial species. Notably, the protein-protein interaction (PPI) study through molecular docking suggested the σ factor could be possibly inhibited by an anti-σ. Finally, a knockout of hrpL in E. mallotivora (ΔEmhrpL) resulted in avirulence in four-month-old papaya plants. These findings have revealed that the hrpL is a necessary element in E. mallotivora pathogenicity and also predicted that the gene can be inhibited by an anti-σ.

9.
Enzyme Microb Technol ; 140: 109625, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912685

RESUMO

Endo-ß-1,3-glucanase from alkalophilic bacterium, Bacillus lehensis G1 (Blg32) composed of 284 amino acids with a predicted molecular mass of 31.6 kDa is expressed in Escherichia coli and purified to homogeneity. Herein, Blg32 characteristics, substrates and product specificity as well as structural traits that might be involved in the production of sugar molecules are analysed. This enzyme functions optimally at the temperature of 70 °C, pH value of 8.0 with its catalytic activity strongly enhanced by Mn2+. Remarkably, the purified enzyme is highly stable in high temperature and alkaline conditions. It exhibits the highest activity on laminarin (376.73 U/mg) followed by curdlan and yeast ß-glucan. Blg32 activity increased by 62% towards soluble substrate (laminarin) compared to insoluble substrate (curdlan). Hydrolytic products of laminarin were oligosaccharides with degree of polymerisation (DP) of 1 to 5 with the main product being laminaritriose (DP3). This suggests that the active site of Blg32 could recognise up to five glucose units. High concentration of Blg32 mainly produces glucose whilst low concentration of Blg32 yields oligosaccharides with different DP (predominantly DP3). A theoretical structural model of Blg32 was constructed and structural analysis revealed that Trp156 is involved in multiple hydrophobic stacking interactions. The amino acid was predicted to participate in substrate recognition and binding. It was also exhibited that catalytic groove of Blg32 has a narrow angle, thus limiting the substrate binding reaction. All these properties and knowledge of the subsites are suggested to be related to the possible mode of action of how Blg32 produces glucooligosaccharides.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Glucana Endo-1,3-beta-D-Glucosidase/química , Glucana Endo-1,3-beta-D-Glucosidase/genética , Glucana Endo-1,3-beta-D-Glucosidase/isolamento & purificação , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Metais/química , Modelos Moleculares , Oligossacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
10.
Plant Cell Rep ; 39(11): 1395-1413, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32734510

RESUMO

KEY MESSAGE: Transcript profiling during the early induction phase of oil palm tissue culture and RNAi studies in a model somatic embryogenesis system showed that EgENOD93 expression is essential for somatic embryogenesis. Micropropagation of oil palm through tissue culture is vital for the generation of superior and uniform elite planting materials. Studies were carried out to identify genes to distinguish between leaf explants with the potential to develop into embryogenic or non-embryogenic callus. Oil palm cDNA microarrays were co-hybridized with cDNA probes of reference tissue, separately with embryo forming (media T527) and non-embryo (media T694) forming leaf explants sampled at Day 7, Day 14 and Day 21. Analysis of the normalized datasets has identified 77, 115 and 127 significantly differentially expressed genes at Day 7, Day 14, and Day 21, respectively. An early nodulin 93 protein gene (ENOD93), was highly expressed at Day 7, Day 14, and Day 21 and in callus (media T527), as assessed by RT-qPCR. Validation of EgENOD93 across tissue culture lines of different genetic background and media composition showed the potential of this gene as an embryogenic marker. In situ RNA hybridization and functional characterization in Medicago truncatula provided additional evidence that ENOD93 is essential for somatic embryogenesis. This study supports the suitability of EgENOD93 as a marker to predict the potential of leaf explants to produce embryogenic callus. Crosstalk among stresses, auxin, and Nod-factor like signalling molecules likely induces the expression of EgENOD93 for embryogenic callus formation.


Assuntos
Arecaceae/genética , Proteínas de Membrana/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Técnicas de Embriogênese Somática de Plantas , Sementes/genética , Proliferação de Células , DNA Complementar , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Filogenia , Células Vegetais , Folhas de Planta/citologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Fatores de Transcrição/genética
11.
Int J Biol Macromol ; 159: 577-589, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32380107

RESUMO

Short-chain fructooligosaccharides (scFOSs) can be produced from the levan hydrolysis using levanase. Levanase from Bacillus lehensis G1 (rlevblg1) is an enzyme that specifically converts levan to scFOSs. However, the use of free levanase presents a lack of stability and reusability, thus hindering the synthesis of scFOSs for continuous reactions. Here, CLEAs for rlevblg1 were prepared and characterized. Cross-linked levanase aggregates using glutaraldehyde (CLLAs-ga) and bovine albumin serum (CLLAs-ga-bsa) showed the best activity recovery of 92.8% and 121.2%, respectively. The optimum temperature of CLLAs-ga and CLLAs-ga-bsa was increased to 35 °C and 40 °C, respectively, from its free rlevblg1 (30 °C). At high temperature (50 °C), the half-life of CLLAs-ga-bsa was higher than that of free rlevblg1 and CLLAs-ga. Both CLLAs exhibited higher stability at pH 9 and pH 10. Hyperactivation of CLLAs-ga-bsa was achieved with an effectiveness factor of more than 1 and with improved catalytic efficiency. After 3 h reaction, CLLAs-ga-bsa produced the highest total scFOSs yield of 35.4% and total sugar of 60.4% per gram levan. Finally, the reusability of CLLAs for 8 cycles with more than 50% activity retained makes them as a potential synthetic catalyst to be explored for scFOSs synthesis.


Assuntos
Bacillus/enzimologia , Enzimas Imobilizadas/química , Glicosídeo Hidrolases/química , Oligossacarídeos/síntese química , Fenômenos Químicos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Oligossacarídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Termodinâmica
12.
J Biotechnol ; 307: 55-62, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31545972

RESUMO

Carboxylic acid reductases (CARs) are attracting burgeoning attention as biocatalysts for organic synthesis of aldehydes and their follow-up products from economic carboxylic acid precursors. The CAR enzyme class as a whole, however, is still poorly understood. To date, relatively few CAR sequences have been reported, especially from fungal sources. Here, we sought to increase the diversity of the CAR enzyme class. Six new CAR sequences from the white-rot fungus Pycnoporus cinnabarinus were identified from genome-wide mining. Genome and gene clustering analysis suggests that these PcCAR enzymes play different natural roles in Basidiomycete systems, compared to their type II Ascomycete counterparts. The cDNA sequences of all six Pccar genes were deduced and analysis of their corresponding amino acid sequence showed that they encode for proteins of similar properties that possess a conserved modular functional tri-domain arrangement. Phylogenetic analyses showed that all PcCAR enzymes cluster together with the other type IV CARs. One candidate, PcCAR4, was cloned and over-expressed recombinantly in Escherichia coli. Subsequent biotransformation-based screening with a panel of structurally-diverse carboxylic acid substrates suggest that PcCAR4 possessed a more pronounced substrate specificity compared to previously reported CARs, preferring to reduce sterically-rigid carboxylic acids such as benzoic acid. These findings thus present a new functionally-distinct member of the CAR enzyme class.


Assuntos
Oxirredutases/metabolismo , Pycnoporus/enzimologia , Aldeídos/metabolismo , Ácidos Carboxílicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxirredutases/classificação , Oxirredutases/genética , Filogenia , Pycnoporus/genética , Especificidade por Substrato , Trametes/metabolismo
13.
Cell Stress Chaperones ; 24(2): 351-368, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30649671

RESUMO

Studies on TCP1-1 ring complex (TRiC) chaperonin have shown its indispensable role in folding cytosolic proteins in eukaryotes. In a psychrophilic organism, extreme cold temperature creates a low-energy environment that potentially causes protein denaturation with loss of activity. We hypothesized that TRiC may undergo evolution in terms of its structural molecular adaptation in order to facilitate protein folding in low-energy environment. To test this hypothesis, we isolated G. antarctica TRiC (GaTRiC) and found that the expression of GaTRiC mRNA in G. antarctica was consistently expressed at all temperatures indicating their importance in cell regulation. Moreover, we showed GaTRiC has the ability of a chaperonin whereby denatured luciferase can be folded to the functional stage in its presence. Structurally, three categories of residue substitutions were found in α, ß, and δ subunits: (i) bulky/polar side chains to alanine or valine, (ii) charged residues to alanine, and (iii) isoleucine to valine that would be expected to increase intramolecular flexibility within the GaTRiC. The residue substitutions observed in the built structures possibly affect the hydrophobic, hydrogen bonds, and ionic and aromatic interactions which lead to an increase in structural flexibility. Our structural and functional analysis explains some possible structural features which may contribute to cold adaptation of the psychrophilic TRiC folding chamber.


Assuntos
Basidiomycota/metabolismo , Chaperonina com TCP-1 , Sequência de Aminoácidos , Chaperonina com TCP-1/química , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/isolamento & purificação , Chaperonina com TCP-1/fisiologia , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , RNA Mensageiro/genética
14.
Data Brief ; 19: 2416-2419, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30229114

RESUMO

Lichen is a symbiotic organism that exists as a single composite body consisting of a mycobiont (fungus) and a photobiont (algae or a cyanobacterium). Many lichen species are considered as extremophiles due to their tolerance to radiation, desiccation, temperature and pollution. However, not all lichen species are tolerant to harsh environmental conditions as several species are sensitive for example to nitrogen, sulphur, acidity, heavy metals, halogens (e.g. fluoride) and ozone. Thus, to better understand why some lichens can withstand exposure to pollutants as opposed to those that are susceptible, we focused on the lichen species of Dirinaria known for their wide distribution in the tropics, subtropics and pantropical, and moderate tolerance to air pollution. Their moderate tolerance to air pollution affords them to thrive in good air quality environments as well as polluted air environments. Lichen samples of Dirinaria sp., UKM-J1 and UKM-K1, were respectively collected from two areas with different levels of air quality based on Air Pollutant Index or API (with index pollutant criteria of PM10, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide) in the outskirt of Jerantut (UKM-J1), a rural area in the middle of Peninsular Malaysia and the township of Klang (UKM-K1), in a busy area of the Klang Valley, Malaysia. API was monitored throughout 2012-2013 whereby the sample collection site in Klang showed markedly higher concentrations of pollutants in all the index pollutant criteria as compared to that of Jerantut. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from the lichen samples. Raw reads from both libraries were deposited in the NCBI database with the accession number SRP138994.

15.
Mar Environ Res ; 137: 169-176, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29598997

RESUMO

Glaciozyma antarctica PI12, is a psychrophilic yeast isolated from Antarctic sea. In this work, Expressed Sequence Tags (EST) from cells exposed to three different temperatures; 15 °C, 0 °C and -12 °C were generated to identify genes associated with cold adaptation. A total of 5376 clones from each library were randomly picked and sequenced. Comparative analyses from the resulting ESTs in each condition identified several groups of genes required for cold adaptation. Additionally, 319 unique transcripts that encoded uncharacterised functions were identified in the -12 °C library and are currently unique to G. antarctica. Gene expression analysis using RT-qPCR revealed two of the unknown genes to be up-regulated at -12 °C compared to 0 °C and 15 °C. These findings further contribute to the collective knowledge into G. antarctica cold adaptation and as a resource for understanding the ecological and physiological tolerance of psychrophilic microbes in general.


Assuntos
Adaptação Fisiológica , Basidiomycota/fisiologia , Aclimatação , Regiões Antárticas , Temperatura Baixa , Camada de Gelo
16.
PLoS One ; 13(1): e0189947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29385175

RESUMO

Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.


Assuntos
Adaptação Fisiológica/genética , Basidiomycota/fisiologia , Temperatura Baixa , Ecossistema , Genoma Fúngico , Regiões Antárticas , Proteínas Anticongelantes/genética , Basidiomycota/genética , Íntrons , RNA Nucleolar Pequeno/genética
17.
Mol Biotechnol ; 59(7): 271-283, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28573450

RESUMO

Coptotermes curvignathus is a termite that, owing to its ability to digest living trees, serves as a gold mine for robust industrial enzymes. This unique characteristic reflects the presence of very efficient hydrolytic enzyme systems including cellulases. Transcriptomic analyses of the gut of C. curvignathus revealed that carbohydrate-active enzymes (CAZy) were encoded by 3254 transcripts and that included 69 transcripts encoding glycoside hydrolase family 7 (GHF7) enzymes. Since GHF7 enzymes are useful to the biomass conversion industry, a gene encoding for a GHF7 enzyme (Gh1254) was synthesized, sub-cloned and expressed in the methylotrophic yeast Pichia pastoris. Expressed GH1254 had an apparent molecular mass of 42 kDa, but purification was hampered by its low expression levels in shaken flasks. To obtain more of the enzyme, GH1254 was produced in a bioreactor that resulted in a fourfold increase in crude enzyme levels. The purified enzyme was active towards soluble synthetic substrates such as 4-methylumbelliferyl-ß-D-cellobioside, 4-nitrophenyl-ß-D-cellobioside and 4-nitrophenyl-ß-D-lactoside but was non-hydrolytic towards Avicel or carboxymethyl cellulose. GH1254 catalyzed optimally at 35 °C and maintained 70% of its activity at 25 °C. This enzyme is thus potentially useful in food industries employing low-temperature conditions.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/genética , Isópteros/microbiologia , Animais , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Clonagem Molecular , Estabilidade Enzimática , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Filogenia , Pichia/genética , Pichia/crescimento & desenvolvimento
19.
Biotechnol Appl Biochem ; 63(5): 690-698, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26265428

RESUMO

The gene encoding a cellobiohydrolase 7B (CBH7B) of the thermophilic fungus Thielavia terrestris was identified, subcloned, and expressed in Pichia pastoris. CBH7B encoded 455 amino acid residues with a molecular mass of 51.8 kDa. Domain analysis indicated that CBH7B contains a family 7 glycosyl hydrolase catalytic core but lacks a carbohydrate-binding module. Purified CBH7B exhibited optimum catalytic activity at pH 5.0 and 55 °C with 4-methylumbelliferryl-cellobioside as the substrate and retained 85% of its activity following 24 H incubation at 50 °C. Despite the lack of activity toward microcrystalline substrates, this enzyme worked synergistically with the commercial enzyme cocktail Cellic® CTec2 to enhance saccharification by 39% when added to a reaction mixture containing 0.25% alkaline pretreated oil palm empty fruit bunch (OPEFB). Attenuated total reflectance Fourier transform infrared spectroscopy suggested a reduction of lignin and crystalline cellulose in OPEFB samples supplemented with CBH7B. Scanning electron microscopy revealed greater destruction extent of OPEFB strands in samples supplemented with CBH7B as compared with the nonsupplemented control. Therefore, CBH7B has the potential to complement commercial enzymes in hydrolyzing lignocellulosic biomass.


Assuntos
Celulose 1,4-beta-Celobiosidase/genética , Engenharia Genética/métodos , Pichia/genética , Sordariales/enzimologia , Celulose 1,4-beta-Celobiosidase/biossíntese , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Expressão Gênica , Genoma Fúngico/genética , Hidrólise , Lignina/metabolismo , Metais/farmacologia , Desnaturação Proteica/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sordariales/genética
20.
PLoS One ; 9(6): e99774, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24927412

RESUMO

BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses.


Assuntos
Arecaceae/genética , Genes de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Arecaceae/fisiologia , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA