Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(2): e53496, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440013

RESUMO

BACKGROUND: The Omicron variant (B.1.1.529 lineage) of SARS-CoV-2 represents a substantial global health challenge due to its high transmissibility and potential resistance to immunity from vaccines or previous infections. Among the rapidly evolving Omicron lineages, the BA.2.75 and the emerging CH.1.1 have garnered attention. While BA.2.75 is marked by mutations that may enhance immune evasion, CH.1.1 is distinguished by the S: L452R mutation, linked to increased pathogenicity and transmission. Initially identified in India by the end of 2021, these variants have exhibited global dissemination, signaling an urgent need to track and analyze their progression. METHODS: In this study, the genomic and geographical distribution data of CH.1.1 were collected from the Global Initiative on Sharing Avian Influenza Data (GISAID), PANGOLIN, CoV-Spectrum, and NextStrain databases. Due to the unavailability of epidemiological and genomic data of the CH.1.1 lineage, PubMed and ScienceDirect were used as sources of the phenotypic data of the lineage variations. Amino acid variations utilized in the data mining included S: R346T, S: K444T, S: L452R, and S: F486S. RESULTS: The current epidemiological data indicate that CH.1.1 is more likely to become one of the dominant spreading lineages in the United Kingdom, New Zealand, Australia, and the United States based on a 32% growth advantage, present CH.1.1 lineage cases number, and the amino acid variation's impact. CONCLUSION: A significant increase in the newly detected lineage CH.1.1 is highly anticipated. The rise in the detected sequences number from 13,231 on January 21, 2023, to 23,181 on February 6, 2023, supports the prediction and growth advantage of the lineage detected cases. Increases in viral transmissibility caused by higher affinity to ACE2 receptors and immune evasion are deduced from amino acid variations analyzed in the study.

2.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108340

RESUMO

Urokinase receptors regulate the interplay between inflammation, immunity, and blood clotting. The soluble urokinase plasminogen activator system is an immunologic regulator affecting endothelial function and its related receptor; the soluble urokinase plasminogen activator receptor (suPAR) has been reported to impact kidney injury. This work aims to measure serum levels of suPAR in COVID-19 patients and correlate the measurements with variable clinicolaboratory parameters and patient outcomes. In this prospective cohort study, 150 COVID-19 patients and 50 controls were included. The circulating suPAR levels were quantified by Enzyme-linked immunosorbent assay (ELISA). Routine COVID-19 laboratory assessments, including CBC, CRP, LDH, serum creatinine, and estimated glomerular filtration rates, were performed. The need for oxygen therapy, CO-RAD score, and survival rates was assessed. Bioinformatic analysis and molecular docking were run to explore the urokinase receptor structure/function and to characterize molecules as potential anti-suPAR therapeutic targets, respectively. We found higher circulating suPAR levels in COVID-19 patients vs. controls (p < 0.001). Circulating suPAR levels positively correlated with COVID-19 severity, the need for O2 therapy, the total leukocytes count, and the neutrophils to lymphocyte ratio, while they were negatively correlated with the O2 saturation level, albumin, blood calcium, lymphocytic count, and GFR. In addition, the suPAR levels were associated with poor prognostic outcomes such as a high incidence of acute kidney injury (AKI) and mortality rate. Kaplan-Meier curves showed a lower survival rate with higher suPAR levels. The logistic regression analysis confirmed the significant association of suPAR levels with the occurrence of AKI related to COVID-19 and with increased mortality probability within three months of COVID-19 follow-up. Some compounds that can act similarly to uPAR were discovered and tested by molecular docking to identify the possible ligand-protein interactions. In conclusion, higher circulating suPAR levels were associated with COVID-19 severity and could be considered a putative predictor of AKI development and mortality.


Assuntos
Injúria Renal Aguda , COVID-19 , Humanos , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Estudos Prospectivos , Ativador de Plasminogênio Tipo Uroquinase , Simulação de Acoplamento Molecular , COVID-19/complicações , Injúria Renal Aguda/etiologia , Biomarcadores
3.
Metabolites ; 13(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37110160

RESUMO

As the Urtica dioica L. whole plant's essential oil has presented significant multiple activities, it was therefore evaluated using the GC-MS technique. This essential oil was investigated for its antioxidant, phytotoxic, and antibacterial activities in vitro. The GC-MS analysis data assisted in the identification of various constituents. The study of the essential oil of U. dioica showed potential antioxidant effects and antibacterial activity against the selected pathogens Escherichia coli -ATCC 9837 (E. coli), Bacillus subtilis-ATCC 6633 (B. subtilis), Staphylococcus aureus-ATCC6538 (S. aureus), Pseudomonas aeruginosa-ATCC 9027 (P. aeruginosa), and Salmonella typhi-ATCC 6539 (S. typhi). The library of 23 phytochemicals was docked by using MOE software, and three top virtual hits with peroxiredoxin protein [PDB ID: 1HD2] and potential target protein [PDB ID: 4TZK] were used; hence, the protein-ligand docking results estimated the best binding conformations and a significant correlation with the experimental analysis, in terms of the docking score and binding interactions with the key residues of the native active binding site. The essential oil in the silico pharmacokinetic profile explained the structure and activity relationships of the selected best hits, and their additional parameters provided insight for further clinical investigations. Therefore, it is concluded that the U. dioica essential oil could be a potent antioxidant and antibacterial agent for aromatherapy through its topical application, if further tested in a laboratory and validated.

4.
Front Immunol ; 13: 1008463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569842

RESUMO

Background: A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19. Methods: We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations. Results: The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein-protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation. Conclusions: The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.


Assuntos
COVID-19 , beta-Defensinas , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , beta-Defensinas/genética , beta-Defensinas/metabolismo , COVID-19/genética , Catelicidinas
5.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36016080

RESUMO

Staphylococcus saprophyticus is a Gram-positive coccus responsible for the occurrence of cystitis in sexually active, young females. While effective antibiotics against this organism exist, resistant strains are on the rise. Therefore, prevention via vaccines appears to be a viable solution to address this problem. In comparison to traditional techniques of vaccine design, computationally aided vaccine development demonstrates marked specificity, efficiency, stability, and safety. In the present study, a novel, multi-epitope vaccine construct was developed against S. saprophyticus by targeting fully sequenced proteomes of its five different strains, which were examined using a pangenome and subtractive proteomic strategy to characterize prospective vaccination targets. The three immunogenic vaccine targets which were utilized to map the probable immune epitopes were verified by annotating the entire proteome. The predicted epitopes were further screened on the basis of antigenicity, allergenicity, water solubility, toxicity, virulence, and binding affinity towards the DRB*0101 allele, resulting in 11 potential epitopes, i.e., DLKKQKEKL, NKDLKKQKE, QDKLKDKSD, NVMDNKDLE, TSGTPDSQA, NANSDGSSS, GSDSSSSNN, DSSSSNNDS, DSSSSDRNN, SSSDRNNGD, and SSDDKSKDS. All these epitopes have the efficacy to cover 99.74% of populations globally. Finally, shortlisted epitopes were joined together with linkers and three different adjuvants to find the most stable and immunogenic vaccine construct. The top-ranked vaccine construct was further scrutinized on the basis of its physicochemical characterization and immunological profile. The non-allergenic and antigenic features of modeled vaccine constructs were initially validated and then subjected to docking with immune receptor major histocompatibility complex I and II (MHC-I and II), resulting in strong contact. In silico cloning validations yielded a codon adaptation index (CAI) value of 1 and an ideal percentage of GC contents (46.717%), indicating a putative expression of the vaccine in E. coli. Furthermore, immune simulation demonstrated that, after injecting the proposed MEVC, powerful antibodies were produced, resulting in the sharpest peaks of IgM + IgG formation (>11,500) within 5 to 15 days. Experimental testing against S. saprophyticus can evaluate the safety and efficacy of these prophylactic vaccination designs.

6.
Medicina (Kaunas) ; 58(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36013543

RESUMO

Background and objectives: COVID-19 patients exhibit a broad range of manifestations, presenting with a flu-like respiratory tract infection that can advance to a systemic and severe disease characterized by pneumonia, pulmonary edema, severe damage to the airways, and acute respiratory distress syndrome (ARDS, causing fatality in 70% of COVID-19 cases). A 'cytokine storm' profile is found in most severely influenced COVID-19 patients. The treatment protocol of the disease also includes tocilizumab, which is a humanized monoclonal antibody used to treat autoimmune and inflammatory conditions. This study was designed (1) to assess the role of tocilizumab in COVID-19 patients regarding therapeutic efficacy through evaluation of cytokine release syndrome (CRS) resolution and anticoagulant effect, analyzing clinical safety via monitoring of associated adverse effects profile; and (2) to compare the clinical safety and therapeutic efficacy of institutional treatment regimen (alone) versus tocilizumab added to an institutional treatment module in COVID-19 patients. Materials and Methods: In this study, the endpoints parametric assessment of severely diseased patients of COVID-19 was performed (total n = 172, control group (institutional protocol treatment provided), n = 101 and test group (tocilizumab provided), n = 71) at the Khyber Teaching Institution, MTI, Peshawar. The assessments were compared using non-parametric analyses at baseline and after a follow-up of 12−18 days until the patient discharged or expired. Results: Results of the study revealed an insignificant difference among the control vs. test group in resolving inflammatory parameters (C-reactive protein (CRP) 21.30 vs. 50.07; p = 0.470, ferritin 482.9 vs. 211.5; p = 0.612, lactate dehydrogenase (LDH) 29.12 vs.18.8; p = 0.0863, and D-dimer 464 vs.164.4; p = 0.131). However, a statistically significant difference was found between the control group and test group regarding coagulation parameters (international normalized ratio (INR) 0.12 vs. −0.07; p ≤ 0.001; activated partial thromboplastin time (aPTT) 0.42 vs. −1.16; p ≤ 0.001; prothrombin time (PT) 0.31 vs. −0.96; p ≤ 0.001; platelet count −12.34 vs. −1.47; p = 0.012) and clinical survival rate (89.10 vs. 90.14; p < 0.001). Furthermore, there was significantly higher infection rates and raised alanine aminotransferase (ALT) and alkaline phosphatase (ALP) associated with the tocilizumab group as compared to those receiving institutional treatment (bacterial infections: 0.99% vs. 15.49%; p ≤ 0.01, ALT: 3.96% vs. 28.16%; p ≤ 0.01, ALP: 1.98% vs. 22.53%; p ≤ 0.01). Conclusions: From this study, it was concluded that tocilizumab can be a better drug of choice in terms of efficacy, particularly in resolving coagulopathy in severe COVID-19 patients.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome do Desconforto Respiratório , Anticorpos Monoclonais Humanizados/efeitos adversos , Síndrome da Liberação de Citocina , Humanos , SARS-CoV-2 , Resultado do Tratamento
7.
Int J Gen Med ; 15: 6237-6247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898301

RESUMO

Background: Recently, long non-coding RNAs (lncRNAs) have emerged as potential molecular biomarkers for sepsis. We aimed to profile the expression signature of three inflammation-related lncRNAs, MALAT1, ANRIL, and HHOTAIR, in the plasma of neonates with sepsis and correlate these signatures with the phenotype. Patients and Methods: This case-control study included 124 neonates with sepsis (88 survivors/36 non-survivors) admitted to the neonatal ICU and 17 healthy neonates. The relative expressions were quantified by real-time PCR and correlated to the clinic-laboratory data. Results: The three circulating lncRNAs were upregulated in the cases; the median levels were MALAT1 (median = 1.71, IQR: -0.5 to 3.27), ANRIL (median = 1.09, IQR: 0.89 to 1.30), and HOTAIR (median = 1.83, IQR: 1.44 to 2.41). Co-expression analysis showed that the three studied lncRNAs were directly correlated (all p-values <0.001). Overall and stratification by sex analyses revealed significantly higher levels of the three lncRNAs in non-survivors compared to the survivor group (all p-values <0.001). Principal component analysis showed a clear demarcation between the two study cohorts in males and females. Cohorts with upregulated ANRIL (hazard ratio; HR = 4.21, 95% CI = 1.15-10.4, p=0.030) and HOTAIR (HR = 2.49, 95% CI = 1.02-6.05, p=0.044) were at a higher risk of mortality. Conclusion: Circulatory MALAT1, ANRIL, and HOTAIR were upregulated in neonatal sepsis, and the latter two may have the potential as prognostic biomarkers for survival in neonatal sepsis.

8.
Int J Immunopathol Pharmacol ; 36: 3946320221096207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622504

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic resulted in more than five hundred million infected cases worldwide. The current study aimed to screen the correlation of different laboratory findings with disease severity and clinical outcomes of coronavirus disease (COVID-19) among Egyptian patients to obtain prognostic indicators of disease severity and outcome.A total of 112 laboratory-confirmed COVID-19 patients were examined. According to the severity of the disease, these patients were divided into three main groups: mild, moderate and severe cases. In addition, clinical characteristics and laboratory findings, including Hb, platelet count, white blood cell count, lymphocyte percentage, neutrophil percentage, neutrophil lymphocyte ratio (NLR), D-dimer, highly sensitive C-reactive protein (HS-CRP), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and creatinine, were measured.The presence of hypertension and/or diabetes was found to be a significant risk factor for disease severity and poor outcome. Increased respiratory rate, levels of SpO2, HS-CRP, D-dimer, NLR, ALT, LDH, lymphopenia and neutrophilia, as well as changes in chest computed tomography (CT), were associated with increased disease severity and fatal consequences. Highly sensitive C-reactive protein, D-dimer, NLR and LDH constituted excellent predictors for both disease severity and death.Laboratory biomarkers, such as HS-CRP, D-dimer, NLR and LDH, are excellent predictors for both disease severity and death. They can predict mortality in patients at the time of admission secondary to SARS-CoV-2 infection and can help physicians identify high-risk patients before clinical deterioration.


Assuntos
Proteína C-Reativa , COVID-19 , Biomarcadores , Proteína C-Reativa/análise , Progressão da Doença , Egito , Humanos , L-Lactato Desidrogenase , SARS-CoV-2
9.
Int J Gen Med ; 15: 2929-2944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308569

RESUMO

Purpose: Recently, glucose and amino acid transporters have gradually become a hot topic in thyroid gland biology and cancer research. We aimed to investigate the expressions of glucose transporter 1 (GLUT1) and glutamine transporter 2 (ASCT2) in papillary thyroid carcinoma (PTC) and their clinical significance and relation to HCV-related hepatitis. Patients and Methods: Screening 202 TC tissue samples against the selection criteria using a propensity-score matched analysis to adjust for age, sex, side of tumor, histopathological variants, TNM staging system, and the positivity for HCV yielded 51 matched (17 HCV positive and 34 HCV negative) PTC samples. The expressions of GLUT1 and ASCT2 expressions were detected by immunohistochemical staining. Kaplan-Meier survival curves were generated for disease-free and overall survival, and multivariate Cox regression analysis was applied to identify predictors for mortality. Results: Of 51 thyroid cancer tissues, 85% showed positive GLUT1 cytoplasmic staining, and 26% had a high expression score. All thyroid cancer specimens demonstrated ASCT2 cytoplasmic staining with membranous accentuation. Of these, 78% showed a high expression score, and 22% showed weak staining. On stratifying the study cohort based on the HCV status, HCV negative cohort showed a significantly higher immunoreactivity score for GLUT1 (p = 0.004) but not ASCT2 (p = 0.94) than HCV positive group. The expressions of the studied transporters showed no significant associations with the prognostic features of PTC nor the disease-free/overall survival. Conclusion: GLUT1 and ASCT2 immunohistochemical staining showed positive expression with variable intensity in nearly 85% and 100% of PTC tissue samples compared to normal ones, respectively. Furthermore, GLUT1 protein expression, not ASCT2, showed a higher immunoreactivity score in PTC patients who are negative for HCV than cancer patients with positive HCV. Meanwhile, the expression of both protein markers was not associated with the clinicopathological characteristics of the studied PTC patients. Further large-scale multicenter studies are recommended to validate the present findings.

10.
Front Pharmacol ; 11: 582025, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123014

RESUMO

The recent outbreak of the COVID-2019 (coronavirus disease 2019) due to the infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has realized the requirement of alternative therapeutics to mitigate and alleviate this lethal infection. These alternative therapies are effective when they are started at the initial stage of the infection. Some drugs that were used in previous other related infections SARS-CoV-2003 and Middle East respiratory syndrome coronavirus (MERS-CoV)-2012 could be potentially active against currently emerging SARS-CoV-2. This fact imparts some rationale of current interventions, in the absence of any specific therapeutics for SARS-CoV-2. It is imperative to focus on the available antimicrobial and adjunct therapies during the current emergency state and overcome the challenges associated with the absence of robust controlled studies. There is no established set of drugs to manage SARS-CoV-2 infected patients. However, closely following patients' conditions and responding with the dosage guidelines of available drugs may significantly impact our ability to slow down the infection. Of note, it depends upon the condition of the patients and associated comorbid; therefore, the health workers need to choose the drug combinations judiciously until COVID-19 specific drug or vaccine is developed with the collective scientific rigor. In this article, we reviewed the available antimicrobial drug, supportive therapies, and probable high importance vaccines for the COVID-19 treatment.

11.
Front Cell Dev Biol ; 8: 616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754599

RESUMO

In December 2019, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related epidemic was first observed in Wuhan, China. In 2020, owing to the highly infectious and deadly nature of the virus, this widespread novel coronavirus disease 2019 (nCOVID-19) became a worldwide pandemic. Studies have revealed that various environmental factors including temperature, humidity, and air pollution may also affect the transmission pattern of COVID-19. Unfortunately, still, there is no specific drug that has been validated in large-scale studies to treat patients with confirmed nCOVID-19. However, remdesivir, an inhibitor of RNA-dependent RNA polymerase (RdRp), has appeared as an auspicious antiviral drug. Currently, a large-scale study on remdesivir (i.e., 200 mg on first day, then 100 mg once/day) is ongoing to evaluate its clinical efficacy to treat nCOVID-19. Good antiviral activity against SARS-CoV-2 was not observed with the use of lopinavir/ritonavir (LPV/r). Nonetheless, the combination of umifenovir and LPV/r was found to have better antiviral activity. Furthermore, a combination of hydroxychloroquine (i.e., 200 mg 3 times/day) and azithromycin (i.e., 500 mg on first day, then 250 mg/day from day 2-5) also exhibited good activity. Currently, there are also ongoing studies to evaluate the efficacy of teicoplanin and monoclonal and polyclonal antibodies against SARS-CoV-2. Thus, in this article, we have analyzed the genetic diversity and molecular pathogenesis of nCOVID-19. We also present possible therapeutic options for nCOVID-19 patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA