Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 118: 111422, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255023

RESUMO

Despite the progress in cancer nanotherapeutics, some obstacles still impede the success of nanocarriers and hinder their clinical translation. Low drug loading, premature drug release, off-target toxicity and multi-drug resistance are among the most difficult challenges. Lactoferrin (LF) has demonstrated a great tumor targeting capacity via its high binding affinity to low density lipoprotein (LDL) and transferrin (Tf) receptors overexpressed by various cancer cells. Herein, docetaxel (DTX) and celastrol (CST) could be successfully conjugated to LF backbone for synergistic breast cancer therapy. Most importantly, the conjugate self-assembled forming nanoparticles of 157.8 nm with elevated loading for both drugs (6.94 and 5.98% for DTX and CST, respectively) without risk of nanocarrier instability. Moreover, the nanoconjugate demonstrated enhanced in vivo anti-tumor efficacy in breast cancer-bearing mice, as reflected by a reduction in tumor volume, prolonged survival rate and significant suppression of NF-κB p65, TNF-α, COX-2 and Ki-67 expression levels compared to the group given free combined DTX/CST therapy and to positive control. This study demonstrated the proof-of-principle for dual drug coupling to LF as a versatile nanoplatform that could augment their synergistic anticancer efficacy.


Assuntos
Antineoplásicos , Nanopartículas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Lactoferrina , Camundongos , NF-kappa B , Nanoconjugados , Triterpenos Pentacíclicos
2.
Eur J Pharm Biopharm ; 155: 162-176, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32818610

RESUMO

Breast cancer is not only one of the most prevalent types of cancer, but also it is a prime cause of death in women aged between 20 and 59. Although chemotherapy is the most common therapy approach, multiple side effects can result from lack of specificity and the use of overdose as safe doses may not completely cure cancer. Therefore, we aimed in this study is to combine the merits of NF-κB inhibiting potential of celastrol (CST) with glutathione inhibitory effect of sulfasalazine (SFZ) which prevents CST inactivation and thus enhances its anti-tumor activity. Inspired by the CD44-mediated tumor targeting effect of the hydrophilic polysaccharide chondroitin sulphate (ChS), we chemically synthesized amphiphilic zein-ChS micelles. While the water insoluble SFZ was chemically coupled to zein, CST was physically entrapped within the hydrophobic zein/SFZ micellar core. Moreover, physical encapsulation of oleic acid-capped SPIONs in the hydrophobic core of micelles enabled both magnetic tumor targeting as well as MRI theranostic capacity. Combining magnetic targeting to with the active targeting effect of ChS resulted in enhanced cellular internalization of the micelles in MCF-7 cancer cells and hence higher cytotoxic effect against MCF-7 and MDA-MB-231 breast cancer cells. In the in vivo experiments, magnetically-targeted micelles (154.4 nm) succeeded in achieving the lowest percentage increase in the tumor volume in tumor bearing mice, the highest percentage of tumor necrosis associated with significant reduction in the levels of TNF-α, Ki-67, NF-κB, VEGF, COX-2 markers compared to non-magnetically targeted micelles-, free drug-treated and positive control groups. Collectively, the developed magnetically targeted micelles pave the way for design of cancer nano-theranostic drug combinations.


Assuntos
Antineoplásicos/administração & dosagem , Glutationa/antagonistas & inibidores , Nanopartículas de Magnetita/administração & dosagem , Micelas , NF-kappa B/antagonistas & inibidores , Nanomedicina/métodos , Animais , Antineoplásicos/metabolismo , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Sinergismo Farmacológico , Glutationa/metabolismo , Humanos , Células MCF-7 , Camundongos , NF-kappa B/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
ACS Appl Mater Interfaces ; 11(30): 26731-26744, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31268657

RESUMO

Herein, both strategies of synergistic drug combination together with dual active tumor targeting were combined for effective therapy of hepatocellular carcinoma (HCC). Therefore, based on the tumor sensitizing action, the herbal quercetin (QRC) was co-delivered with the targeted therapeutic drug sorafenib (SFB), preformulated as phospholipid complex, via protein shell-oily core nanocapsules (NCs). Inspired by the targeting action of lactoferrin (LF) via binding to LF receptors overexpressed by HCC cells, LF shell was electrostatically deposited onto the drug-loaded oily core to elaborate LF shell-oily core NCs. For dual tumor targeting, lactobionic acid (LA) or glycyrrhetinic acid (GA) was individually coupled to LF shell for binding to asialoglycoprotein and GA receptors on liver cancer cells, respectively. Compared to LF and GA/LF NCs, the dual-targeted LA/LF-NCs showed higher internalization into HepG2 cells with 2-fold reduction in half-maximal inhibitory concentration compared to free combination therapy after 48 h. Moreover, dual-targeted LF-NCs showed powerful in vivo antitumor efficacy. It was revealed as significant downregulation of the mRNA expression levels of nuclear factor-kappa B and tumor necrosis factor α as well as suppression of Ki-67 protein expression level in diethylnitrosamine (DEN)-induced HCC mice (P < 0.05). Furthermore, dual-targeted LF-NCs attenuated the liver toxicity induced by DEN in animal models. Overall, this study proposes dual-targeted LF-NCs for combined delivery of SFB and QRC as a potential therapeutic HCC strategy.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Lactoferrina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nanocápsulas/química , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/química , Dietilnitrosamina/farmacologia , Dissacarídeos/química , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácido Glicirretínico/química , Células Hep G2 , Humanos , Antígeno Ki-67/genética , Lactoferrina/química , Lactoferrina/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , NF-kappa B/genética , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA