Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 671852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539595

RESUMO

Respiratory syncytial virus (RSV) or measles virus (MeV) infection modifies host responses through small non-coding RNA (sncRNA) expression. We show that RSV or MeV infection of neuronal cells induces sncRNAs including various microRNAs and transfer RNA fragments (tRFs). We show that these tRFs originate from select tRNAs (GCC and CAC for glycine, CTT and AAC for Valine, and CCC and TTT for Lysine). Some of the tRNAs are rarely used by RSV or MeV as indicated by relative synonymous codon usage indices suggesting selective cleavage of the tRNAs occurs in infected neuronal cells. The data implies that differentially expressed sncRNAs may regulate host gene expression via multiple mechanisms in neuronal cells.

2.
Viruses ; 11(10)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615092

RESUMO

Canine distemper virus (CDV) and phocine distemper (PDV) are closely-related members of the Paramyxoviridae family, genus morbillivirus, in the order Mononegavirales. CDV has a broad host range among carnivores. PDV is thought to be derived from CDV through contact between terrestrial carnivores and seals. PDV has caused extensive mortality in Atlantic seals and other marine mammals, and more recently has spread to the North Pacific Ocean. CDV also infects marine carnivores, and there is evidence of morbillivirus infection of seals and other species in Antarctica. Recently, CDV has spread to felines and other wildlife species in the Serengeti and South Africa. Some CDV vaccines may also have caused wildlife disease. Changes in the virus haemagglutinin (H) protein, particularly the signaling lymphocyte activation molecule (SLAM) receptor binding site, correlate with adaptation to non-canine hosts. Differences in the phosphoprotein (P) gene sequences between disease and non-disease causing CDV strains may relate to pathogenicity in domestic dogs and wildlife. Of most concern are reports of CDV infection and disease in non-human primates raising the possibility of zoonosis. In this article we review the global occurrence of CDV and PDV, and present both historical and genetic information relating to these viruses crossing species barriers.


Assuntos
Animais Selvagens/virologia , Vírus da Cinomose Canina/genética , Vírus da Cinomose Focina/genética , Especificidade de Hospedeiro , Infecções por Morbillivirus/veterinária , Morbillivirus/genética , Animais , Gatos , Cetáceos/virologia , Mudança Climática , Vírus da Cinomose Canina/patogenicidade , Vírus da Cinomose Focina/patogenicidade , Cães , Morbillivirus/patogenicidade , Morbillivirus/fisiologia , Animais de Estimação/virologia , Primatas/virologia , Proteínas Virais/genética
3.
PLoS One ; 12(2): e0171681, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28187208

RESUMO

Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Canais de Cálcio/genética , Sarampo/metabolismo , Proteínas do Tecido Nervoso/genética , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/genética , Regulação para Cima , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Proteínas do Tecido Nervoso/metabolismo , Mucosa Respiratória/virologia , Canal de Cátion TRPA1 , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
4.
PLoS One ; 9(8): e106281, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25171206

RESUMO

Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin ß and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin ß antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Vírus da Cinomose Focina/fisiologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Animais , Antígenos CD/genética , Células CHO , Moléculas de Adesão Celular/genética , Chlorocebus aethiops , Cricetinae , Cricetulus , Cinomose/genética , Cinomose/metabolismo , Cães , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Receptores de Superfície Celular/genética , Receptores Virais/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Células Vero
5.
J Allergy Clin Immunol ; 133(3): 704-12.e4, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24210884

RESUMO

BACKGROUND: The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of TRPV1 on airway epithelium has yet to be elucidated. OBJECTIVE: In this study we examined the molecular, functional, and immunohistochemical expression of TRPV1 in asthmatic and healthy airways. METHODS: Bronchial biopsy specimens and bronchial brushings were obtained from healthy volunteers (n = 18), patients with mild-to-moderate asthma (n = 24), and patients with refractory asthma (n = 22). Cultured primary bronchial epithelial cells from patients with mild asthma (n = 4), nonasthmatic coughers (n = 4), and healthy subjects (n = 4) were studied to investigate the functional role of TRPV1. RESULTS: Quantitative immunohistochemistry revealed significantly more TRPV1 expression in asthmatic patients compared with healthy subjects, with the greatest expression in patients with refractory asthma (P = .001). PCR and Western blotting analysis confirmed gene and protein expression of TRPV1 in cultured primary bronchial epithelial cells. Patch-clamp electrophysiology directly confirmed functional TRPV1 expression in all 3 groups. In functional assays the TRPV1 agonist capsaicin induced dose-dependent IL-8 release, which could be blocked by the antagonist capsazepine. Reduction of external pH from 7.4 to 6.4 activated a capsazepine-sensitive outwardly rectifying membrane current. CONCLUSIONS: Functional TRPV1 channels are present in the human airway epithelium and overexpressed in the airways of patients with refractory asthma. These channels might represent a novel therapeutic target for the treatment of uncontrolled asthma.


Assuntos
Asma/metabolismo , Brônquios/química , Canais de Cátion TRPV/fisiologia , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Canais de Cátion TRPV/análise , Canais de Cátion TRPV/genética
6.
J Neuropathol Exp Neurol ; 72(7): 681-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23771216

RESUMO

Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/citologia , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/efeitos dos fármacos , Vírus do Sarampo/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Animais , Anticorpos/farmacologia , Antígenos CD34/metabolismo , Encéfalo/patologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/virologia , Humanos , Sarampo/metabolismo , Sarampo/patologia , Sarampo/virologia , Camundongos , Camundongos Endogâmicos C57BL , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Fatores de Tempo , Raios Ultravioleta , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA