Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G438-G459, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193195

RESUMO

The calcium-sensing receptor (CaSR), a G protein-coupled receptor, regulates Ca2+ concentration in plasma by regulating parathyroid hormone secretion. In other tissues, it is reported to play roles in cellular differentiation and migration and in secretion and absorption. We reported previously that CaSR can be conditionally deleted in the mouse esophagus. This conditional knockout (KO) (EsoCaSR-/-) model showed a significant reduction in the levels of adherens and tight junction proteins and had a marked buildup of bacteria on the luminal esophageal surface. To further examine the role of CaSR, we used RNA sequencing to determine gene expression profiles in esophageal epithelia of control and EsoCaSR-/-mice RNA Seq data indicated upregulation of gene sets involved in DNA replication and cell cycle in EsoCaSR-/-. This is accompanied by the downregulation of gene sets involved in the innate immune response and protein homeostasis including peptide elongation and protein trafficking. Ingenuity pathway analysis (IPA) demonstrated that these genes are mapped to important biological networks including calcium and Ras homologus A (RhoA) signaling pathways. To further explore the bacterial buildup in EsoCaSR-/- esophageal tissue, 16S sequencing of the mucosal-associated bacterial microbiome was performed. Three bacterial species, g_Rodentibacter, s_Rodentibacter_unclassified, and s_Lactobacillus_hilgardi were significantly increased in EsoCaSR-/-. Furthermore, metagenomic analysis of 16S sequences indicated that pathways related to oxidative phosphorylation and metabolism were downregulated in EsoCaSR-/- tissues. These data demonstrate that CaSR impacts major pathways of cell proliferation, differentiation, cell cycle, and innate immune response in esophageal epithelium. The disruption of these pathways causes inflammation and significant modifications of the microbiome.NEW & NOTEWORTHY Calcium-sensing receptor (CaSR) plays a significant role in maintaining the barrier function of esophageal epithelium. Using RNA sequencing, we show that conditional deletion of CaSR from mouse esophagus causes upregulation of genes involved in DNA replication and cell cycle and downregulation of genes involved in the innate immune response, protein translation, and cellular protein synthesis. Pathway analysis shows disruption of signaling pathways of calcium and actin cytoskeleton. These changes caused inflammation and esophageal dysbiosis.


Assuntos
Cálcio , Microbiota , Animais , Camundongos , Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Esôfago/metabolismo , Inflamação , Expressão Gênica
2.
Methods Mol Biol ; 2367: 215-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32946026

RESUMO

The Ussing chamber was developed in 1949 by Hans Ussing and quickly became a powerful tool to study ion and solute transport in epithelia. The chamber has two compartments strictly separating the apical and basolateral sides of the tissue under study. The two sides of the tissue are connected via electrodes to a modified electrometer/pulse generator that allows measurement of electrical parameters, namely, transepithelial voltage, current, and resistance. Simultaneously, permeability of the tissue to specific solutes or markers can be monitored by using tracers or isotopes to measure transport from one side of the tissue to the other. In this chapter, we will describe the use of the Ussing chamber to study the barrier properties of the mouse esophageal epithelium. We will also briefly describe the use of the modified Ussing chamber to simultaneously study transepithelial and cellular electrophysiology in the rabbit esophageal epithelium. Lastly, we will cover the use of the Ussing chamber to study bicarbonate secretion in the pig esophagus. These examples highlight the versatility of the Ussing chamber technique in investigating the physiology and pathophysiology of epithelia including human biopsies.


Assuntos
Esôfago , Animais , Epitélio , Camundongos , Permeabilidade , Coelhos , Suínos
3.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G144-G161, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709833

RESUMO

Calcium-sensing receptor (CaSR) is the molecular sensor by which cells respond to small changes in extracellular Ca2+ concentrations. CaSR has been reported to play a role in glandular and fluid secretion in the gastrointestinal tract and to regulate differentiation and proliferation of skin keratinocytes. CaSR is present in the esophageal epithelium, but its role in this tissue has not been defined. We deleted CaSR in the mouse esophagus by generating keratin 5 CreER;CaSRFlox+/+compound mutants, in which loxP sites flank exon 7 of CaSR gene. Recombination was initiated with multiple tamoxifen injections, and we demonstrated exon 7 deletion by PCR analysis of genomic DNA. Quantitative real-time PCR and Western blot analyses showed a significant reduction in CaSR mRNA and protein expression in the knockout mice (EsoCaSR-/-) as compared with control mice. Microscopic examination of EsoCaSR-/- esophageal tissues showed morphological changes including elongation of the rete pegs, abnormal keratinization and stratification, and bacterial buildup on the luminal epithelial surface. Western analysis revealed a significant reduction in levels of adherens junction proteins E-cadherin and ß catenin and tight junction protein claudin-1, 4, and 5. Levels of small GTPase proteins Rac/Cdc42, involved in actin remodeling, were also reduced. Ussing chamber experiments showed a significantly lower transepithelial resistance in knockout (KO) tissues. In addition, luminal-to-serosal-fluorescein dextran (4 kDa) flux was higher in KO tissues. Our data indicate that CaSR plays a role in regulating keratinization and cell-cell junctional complexes and is therefore important for the maintenance of the barrier function of the esophagus.NEW & NOTEWORTHY The esophageal stratified squamous epithelium maintains its integrity by continuous proliferation and differentiation of the basal cells. Here, we demonstrate that deletion of the calcium-sensing receptor, a G protein-coupled receptor, from the basal cells disrupts the structure and barrier properties of the epithelium.


Assuntos
Mucosa Esofágica/metabolismo , Receptores de Detecção de Cálcio/deficiência , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Animais , Caderinas/metabolismo , Diferenciação Celular , Proliferação de Células , Claudinas/metabolismo , Impedância Elétrica , Mucosa Esofágica/microbiologia , Mucosa Esofágica/patologia , Feminino , Deleção de Genes , Masculino , Camundongos Knockout , Permeabilidade , Receptores de Detecção de Cálcio/genética , Transdução de Sinais , Junções Íntimas/metabolismo , Junções Íntimas/patologia , beta Catenina/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
4.
Physiol Rep ; 7(16): e14221, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31456326

RESUMO

Hypercapnia and subsequent respiratory acidosis are serious complications in many patients with respiratory disorders. The acute response to hypercapnia is buffering of H+ by hemoglobin and cellular proteins but this effect is limited. The chronic response is renal compensation that increases HCO3- reabsorption, and stimulates urinary excretion of titratable acids (TA) and NH4+ . However, the main effective pathway is the excretion of NH4+ in the collecting duct. Our hypothesis is that, the renal NH3 /NH4+ transporters, Rhbg and Rhcg, in the collecting duct mediate this response. The effect of hypercapnia on these transporters is unknown. We conducted in vivo experiments on mice subjected to chronic hypercapnia. One group breathed 8% CO2 and the other breathed normal air as control (0.04% CO2 ). After 3 days, the mice were euthanized and kidneys, blood, and urine samples were collected. We used immunohistochemistry and Western blot analysis to determine the effects of high CO2 on localization and expression of the Rh proteins, carbonic anhydrase IV, and pendrin. In hypercapnic animals, there was a significant increase in urinary NH4+ excretion but no change in TA. Western blot analysis showed a significant increase in cortical expression of Rhbg (43%) but not of Rhcg. Expression of CA-IV was increased but pendrin was reduced. These data suggest that hypercapnia leads to compensatory upregulation of Rhbg that contributes to excretion of NH3 /NH4+ in the kidney. These studies are the first to show a link among hypercapnia, NH4+ excretion, and Rh expression.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hipercapnia/metabolismo , Túbulos Renais Coletores/metabolismo , Glicoproteínas de Membrana/metabolismo , Acidose Respiratória/etiologia , Acidose Respiratória/metabolismo , Animais , Hipercapnia/complicações , Camundongos
5.
Am J Physiol Renal Physiol ; 311(6): F1280-F1293, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681563

RESUMO

Renal Rhbg is localized to the basolateral membrane of intercalated cells and is involved in NH3/NH4+ transport. The structure of Rhbg is not yet resolved; however, a high-resolution crystal structure of AmtB, a bacterial homolog of Rh, has been determined. We aligned the sequence of Rhbg to that of AmtB and identified important sites of Rhbg that may affect transport. Our analysis positioned three conserved amino acids, histidine 183 (H183), histidine 342 (H342), and tryptophan 230 (W230), within the hydrophobic pore where they presumably serve to control NH3 transport. A fourth residue, phenylalanine 128 (F128) was positioned at the upper vestibule, presumably contributing to recruitment of NH4+ We generated three mutations each of H183, H342, W230, and F128 and expressed them in frog oocytes. Immunolabeling showed that W230 and F128 mutants were localized to the cell membrane, whereas H183 and H342 staining was diffuse and mostly intracellular. To determine function, we compared measurements of NH3/NH4+ and methyl amine (MA)/methyl ammonium (MA+)-induced currents, intracellular pH, and surface pH (pHs) among oocytes expressing the mutants, Rhbg, or injected with H2O. In H183 and W230 mutants, NH4+-induced current and intracellular acidification were inhibited compared with that of Rhbg, and MA-induced intracellular alkalinization was completely absent. Expression of H183A or W230A mutants inhibited NH3/NH4+- and MA/MA+-induced decrease in pHs to the level observed in H2O-injected oocytes. Mutations of F128 did not significantly affect transport of NH3 or NH4+ These data demonstrated that mutating H183 or W230 caused loss of function but not F128. H183 and H342 may affect membrane expression of the transporter.


Assuntos
Amônia/metabolismo , Glicoproteínas/metabolismo , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Transporte Biológico , Glicoproteínas/genética , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/genética , Camundongos , Mutagênese Sítio-Dirigida , Oócitos/metabolismo , Xenopus laevis
6.
Physiol Rep ; 3(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26603452

RESUMO

The calcium-sensing receptor (CaSR), a G-protein-coupled receptor, plays a role in glandular and fluid secretion in the gastrointestinal tract, and regulates differentiation and proliferation of epithelial cells. We examined the expression of CaSR in normal and pathological conditions of human esophagus and investigated the effect of a CaSR agonist, cinacalcet (CCT), and antagonist, calhex (CHX), on cell growth and cell-cell junctional proteins in primary cultures of porcine stratified squamous esophageal epithelium. We used immunohistochemistry and Western analysis to monitor expression of CaSR and cell-cell adhesion molecules, and MTT assay to monitor cell proliferation in cultured esophageal cells. CCT treatment significantly reduced proliferation, changed the cell shape from polygonal to spindle-like, and caused redistribution of E-cadherin and ß-catenin from the cell membrane to the cytoplasm. Furthermore, it reduced expression of ß-catenin by 35% (P < 0.02) and increased expression of a proteolysis cleavage fragment of E-cadherin, Ecad/CFT2, by 2.3 folds (P < 0.01). On the other hand, CHX treatment enhanced cell proliferation by 27% (P < 0.01), increased the expression of p120-catenin by 24% (P < 0.04), and of Rho, a GTPase involved in cytoskeleton remodeling, by 18% (P < 0.03). In conclusion, CaSR is expressed in normal esophagus as well as in Barrett's, esophageal adenocarcinoma, squamous cell carcinoma, and eosinophilic esophagitis. Long-term activation of CaSR with CCT disrupted the cadherin-catenin complex, induced cytoskeletal remodeling, actin fiber formation, and redistribution of CaSR to the nuclear area. These changes indicate a significant and complex role of CaSR in epithelial remodeling and barrier function of esophageal cells.

7.
Am J Physiol Cell Physiol ; 309(11): C747-58, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26354748

RESUMO

In this study we characterized ammonia and ammonium (NH3/NH4(+)) transport by the rhesus-associated (Rh) glycoproteins RhAG, Rhbg, and Rhcg expressed in Xenopus oocytes. We used ion-selective microelectrodes and two-electrode voltage clamp to measure changes in intracellular pH, surface pH, and whole cell currents induced by NH3/NH4(+) and methyl amine/ammonium (MA/MA(+)). These measurements allowed us to define signal-specific signatures to distinguish NH3 from NH4(+) transport and to determine how transport of NH3 and NH4(+) differs among RhAG, Rhbg, and Rhcg. Our data indicate that expression of Rh glycoproteins in oocytes generally enhanced NH3/NH4(+) transport and that cellular changes induced by transport of MA/MA(+) by Rh proteins were different from those induced by transport of NH3/NH4(+). Our results support the following conclusions: 1) RhAG and Rhbg transport both the ionic NH4(+) and neutral NH3 species; 2) transport of NH4(+) is electrogenic; 3) like Rhbg, RhAG transport of NH4(+) masks NH3 transport; and 4) Rhcg is likely to be a predominantly NH3 transporter, with no evidence of enhanced NH4(+) transport by this transporter. The dual role of Rh proteins as NH3 and NH4(+) transporters is a unique property and may be critical in understanding how transepithelial secretion of NH3/NH4(+) occurs in the renal collecting duct.


Assuntos
Amônia/metabolismo , Compostos de Amônio/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Feminino , Glicoproteínas/metabolismo , Transporte de Íons/fisiologia , Oócitos/metabolismo , Xenopus laevis
8.
Clin Immunol ; 148(2): 265-78, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23792687

RESUMO

Eosinophilic esophagitis (EoE), an inflammatory atopic disease of the esophagus, causes massive eosinophil infiltration, basal cell hyperplasia, and sub-epithelial fibrosis. To elucidate cellular and molecular factors involved in esophageal tissue damage and remodeling, we examined pinch biopsies from EoE and normal pediatric patients. An inflammation gene array confirmed that eotaxin-3, its receptor CCR3 and interleukins IL-13 and IL-5 were upregulated. An extracellular matrix (ECM) gene array revealed upregulation of CD44 & CD54, and of ECM proteases (ADAMTS1 & MMP14). A cytokine antibody array showed a marked decrease in IL-1α and IL-1 receptor antagonist and an increase in eotaxin-2 and epidermal growth factor. Western analysis indicated reduced expression of intercellular junction proteins, E-cadherin and claudin-1 and increased expression of occludin and vimentin. We have identified a number of novel genes and proteins whose expression is altered in EoE. These findings provide new insights into the molecular mechanisms of the disease.


Assuntos
Esofagite Eosinofílica/metabolismo , Esofagite Eosinofílica/patologia , Esôfago/patologia , Proteínas da Matriz Extracelular/metabolismo , Inflamação/metabolismo , Moléculas de Adesão Juncional/metabolismo , Junções Aderentes/química , Adolescente , Criança , Pré-Escolar , Citocinas/genética , Citocinas/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Moléculas de Adesão Juncional/genética , Masculino , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Vimentina/genética , Vimentina/metabolismo
9.
Peptides ; 38(2): 395-403, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23023072

RESUMO

We investigated whether pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) ameliorates kidney injury after ischemia/reperfusion (IR) by modulating Toll-like receptor (TLR)-associated signaling pathways. Male C57BL/6 mice were subjected to bilateral renal ischemia for 45 min. PACAP38, 20 µg in 100 µl of saline, was administered i.p. at 24 and 48 h after IR, and mice were euthanized at 72h. In IR mice, PACAP38 maintained serum creatinine near control levels (0.81 ± 0.08 vs. 0.69 ± 0.17 mg/dl in controls, p=NS, vs. 1.8 ± 0.03 in saline-treated IR mice, p<0.01) and significantly reduced the expression of kidney injury biomarkers. PACAP38 significantly reduced the levels of apoptosis and neutrophil infiltration, and protected against tubular damage. With PCR arrays, 59 of 83 TLR-related genes significantly changed their expression after IR. TLR2 increased 162 fold, followed by Fas-associated death domain (37 fold) and TLR6 (24 fold), while ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1) decreased 55 fold. PACAP38 given 24 and 48 h after IR injury significantly reversed these changes in 56 genes, including TLR2, TLR3, TLR4, TLR6, and genes in the NF-κB pathways. The alterations in TLR2, TLR3, TLR6, and UBE2V1 were confirmed by RT-PCR. After IR, PACAP38 also suppressed protein levels of TLR-associated cytokines. PACAP38 reversed the changes in IR-activated TLR-associated NF-κB signaling pathways even when treatment was delayed 24h. Therefore, PACAP38 could be an effective therapeutic for unexpected IR-mediated renal injury. The prominently IR-induced TLR-related genes identified in this study could be novel drug targets.


Assuntos
Rim/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Receptores Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Creatinina/sangue , Citocinas/análise , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Rim/irrigação sanguínea , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/genética
10.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R83-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21474426

RESUMO

The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.


Assuntos
Bicarbonatos/metabolismo , Esôfago/metabolismo , Transporte de Íons/fisiologia , Animais , Antiporters/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Concentração de Íons de Hidrogênio , Modelos Animais , Mucosa/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
11.
J Oral Pathol Med ; 40(1): 27-32, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20923442

RESUMO

AIM: The combination of smoking and drinking alcohol has a high association with diseases of squamous epithelium within the human oral cavity. Therefore, a study was done to assess the impact of these agents alone or in combination on the squamous epithelium using as model the buccal epithelium from rabbit oral cavity. METHODS: Buccal epithelium was mounted in Ussing chambers to monitor electrical parameters during exposure to ethanol (5-40%) or to Ringer extract of cigarette smoke (EOCS) from one to six cigarettes dissolved in 10 ml Ringer either alone or with combination. RESULTS: Exposure to EOCS reduced in a dose dependent manner above 2 cigarettes/10 ml transmural electrical potential difference (PD), short-circuit current (I(sc)), increased transmural electrical resistance (R). Morphology showed from generalize tissue edema to patchy necrosis with the increasing concentrations. Ethanol alone raised PD, I(sc) and R at lower concentrations (5%) and lowered PD, I(sc) and R at higher concentrations (40%). The combination of 5% ethanol, EOCS-1cigarette/10 ml reduced PD, I(sc) by 58% and increased R by 29%. Unlike exposure to 5% EtOH and EOCS-1, 10% EtOH combined with EOCS-1 produces a harmful effect by dropping PD and I(sc). CONCLUSION: Both, simultaneous, and sequential, use of these agents enhanced their negative impact on these parameters. The enhancement of these effects are not due to solubulization of additional tobacco products by EtOH or by or by EtOH enhancing smoking noxious effect. Histopathologic damage needs higher concentrations of ethanol and EOCS combination and changes were more profound compared to the sum of the isolated effects of both agents.


Assuntos
Etanol/farmacologia , Mucosa Bucal/efeitos dos fármacos , Nicotiana , Fumaça/efeitos adversos , Solventes/farmacologia , Animais , Depressores do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Impedância Elétrica , Epitélio/efeitos dos fármacos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Coelhos , Fumar
12.
Am J Physiol Cell Physiol ; 299(6): C1386-97, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20810915

RESUMO

Rhbg is a membrane glycoprotein that is involved in NH(3)/NH(4)(+) transport. Several models have been proposed to describe Rhbg, including an electroneutral NH(4)(+)/H(+) exchanger, a uniporter, an NH(4)(+) channel, or even a gas channel. In this study, we characterized the pH sensitivity of Rhbg expressed in Xenopus oocytes. We used two-electrode voltage clamp and ion-selective microelectrodes to measure NH(4)(+)-induced [and methyl ammonium (MA(+))] currents and changes in intracellular pH (pH(i)), respectively. In oocytes expressing Rhbg, 5 mM NH(4)Cl (NH(3)/NH(4)(+)) at extracellular pH (pH(o)) of 7.5 induced an inward current, decreased pH(i), and depolarized the cell. Raising pH(o) to 8.2 significantly enhanced the NH(4)(+)-induced current and pH(i) changes, whereas decreasing bath pH to 6.5 inhibited these changes. Lowering pH(i) (decreased by butyrate) also inhibited the NH(4)(+)-induced current and pH(i) decrease. In oocytes expressing Rhbg, 5 mM methyl amine hydrochloride (MA/MA(+)), often used as an NH(4)Cl substitute, induced an inward current, a pH(i) increase (not a decrease), and depolarization of the cell. Exposing the oocyte to MA/MA(+) at alkaline bath pH (8.2) enhanced the MA(+)-induced current, whereas lowering bath pH to 6.5 inhibited the MA(+) current completely. Exposing the oocyte to MA/MA(+) at low pH(i) abolished the MA(+)-induced current and depolarization; however, pH(i) still increased. These data indicate that 1) transport of NH(4)(+) and MA/MA(+) by Rhbg is pH sensitive; 2) electrogenic NH(4)(+) and MA(+) transport are stimulated by alkaline pH(o) but inhibited by acidic pH(i) or pH(o); and 3) electroneutral transport of MA by Rhbg is likely but is less sensitive to pH changes.


Assuntos
Glicoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Compostos de Amônio Quaternário/metabolismo , Animais , Butiratos/farmacologia , Concentração de Íons de Hidrogênio , Potenciais da Membrana/efeitos dos fármacos , Metilaminas/metabolismo , Camundongos
13.
Am J Physiol Cell Physiol ; 299(3): C695-705, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592240

RESUMO

Rhbg is a nonerythroid membrane glycoprotein belonging to the Rh antigen family. In the kidney, Rhbg is expressed at the basolateral membrane of intercalated cells of the distal nephron and is involved in NH4+ transport. We investigated the substrate specificity of Rhbg by comparing transport of NH3/NH4+ with that of methyl amine (hydrochloride) (MA/MA+), often used to replace NH3/NH4+, in oocytes expressing Rhbg. Methyl amine (HCl) in solution exists as neutral methyl amine (MA) in equilibrium with the protonated methyl ammonium (MA+). To assess transport, we used ion-selective microelectrodes and voltage-clamp experiments to measure NH3/NH4+- and MA/MA+-induced intracellular pH (pH(i)) changes and whole cell currents. Our data showed that in Rhbg oocytes, NH3/NH4+ caused an inward current and decrease in pH(i) consistent with electrogenic NH4+ transport. These changes were significantly larger than in H2O-injected oocytes. The NH3/NH4+-induced current was not inhibited in the presence of barium or in the absence of Na+. In Rhbg oocytes, MA/MA+ caused an inward current but an increase (rather than a decrease) in pH(i). MA/MA+ did not cause any changes in H2O-injected oocytes. The MA/MA+-induced current and pH(i) increase were saturated at higher concentrations of MA/MA+. Amiloride inhibited MA/MA+-induced current and the increase in pH(i) in oocytes expressing Rhbg but had no effect on control oocytes. These results indicate that MA/MA+ is transported by Rhbg but differently than NH3/NH4+. The protonated MA+ is likely a direct substrate whose transport resembles that of NH4+. Transport of electroneutral MA is also enhanced by expression of Rhbg.


Assuntos
Glicoproteínas/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Metilaminas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Sistema do Grupo Sanguíneo Rh-Hr/fisiologia , Amilorida/farmacologia , Animais , Anuros , Espaço Extracelular/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Transporte de Íons , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Sódio/metabolismo
14.
Dig Dis Sci ; 53(9): 2366-72, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18270837

RESUMO

Tegaserod, a 5-HT4 partial agonist, was shown to reduce esophageal acid exposure in patients with gastroesophageal reflux disease; however, its mechanism of action is poorly understood. Therefore, we have examined the effect of tegaserod on luminal bicarbonate and mucin secretion in the isolated perfused pig esophagus. We also studied its role in esophageal protection using SMG-bearing pig esophagus in comparison to the rabbit esophagus, which is devoid of them. The tissues were mounted in Ussing chambers, and acid injury was replicated by exposing the lumen to acid (pH 1.6) or acid/pepsin (pH 2.5). In pig esophagus, tegaserod increased bicarbonate secretion, but had no effect on basal mucin secretion. In Ussing chambers, tegaserod reduced injury to pig, but not rabbit esophagus exposed to acid (pH 2.5) plus pepsin. These results indicate that tegaserod stimulates SMG bicarbonate secretion, an effect that likely accounts for the observed protection against acid-pepsin injury to pig, but not rabbit, esophagus.


Assuntos
Bicarbonatos/metabolismo , Esôfago/metabolismo , Indóis/farmacologia , Mucinas/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Animais , Esôfago/efeitos dos fármacos , Ácido Clorídrico/farmacologia , Técnicas In Vitro , Masculino , Mucosa/efeitos dos fármacos , Mucosa/metabolismo , Pepsina A/farmacologia , Coelhos , Suínos
15.
Dig Dis Sci ; 52(11): 3054-65, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17394068

RESUMO

The submucosal glands (SMGs) of the pig esophagus, like the human, secrete mucin and bicarbonate, which help in luminal acid clearance and epithelial protection. The aim of this study was to characterize histochemically the esophageal SMGs and a primary culture obtained from these glands. Tissues and cultures were stained with hematoxylin and eosin, periodic acid Schiff, Alcian blue, lectins, or cytokeratins. In the perfused esophagus, addition of carbachol increased mucin secretion by approximately 2-fold. The results indicate that [1] a method for culturing SMG cells was developed; [2] conventional staining indicates the presence of sulfated, acidic, and neutral mucopolysaccharides in glands and cultures; [3] lectin binding indicates the presence of N-acetyl glucosamine, N-acetyl neuraminic acid, N-acetyl galactosamine, and alpha-L: -fucose in mucous cells and cultures; [4] cytokeratin and lectin staining indicated similarities with Barrett epithelium (columnar metaplasia of the esophagus); and [5] cholinergic agonists enhance mucin secretion and this could play a significant role in esophageal protection.


Assuntos
Esôfago/citologia , Mucosa Intestinal/citologia , Animais , Esôfago de Barrett/prevenção & controle , Bicarbonatos/metabolismo , Biomarcadores , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Esôfago/efeitos dos fármacos , Esôfago/metabolismo , Imunofluorescência , Técnicas Imunoenzimáticas , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Queratinas/metabolismo , Lectinas/metabolismo , Mucinas/efeitos dos fármacos , Mucinas/metabolismo , Muramidase/metabolismo , Suínos
16.
Am J Physiol Renal Physiol ; 288(1): F170-81, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15353405

RESUMO

Rhbg is one of two recently cloned nonerythroid glycoproteins belonging to the Rh antigen family. Rhbg is expressed in basolateral membranes of intercalated cells of the kidney cortical collecting duct and some other cell types of the distal nephron and may function as NH(4)(+) transporters. The aim of this study was to characterize the role of Rhbg in transporting NH(4)(+). To do so, we expressed Rhbg in Xenopus laevis oocytes. Two-electrode voltage-clamp and H(+)-selective microlectrodes were used to measure NH(4)(+) currents, current-voltage plots, and intracellular pH (pH(i)). In oocytes expressing Rhbg, 5 mM NH(4)(+) induced an inward current of 93 +/- 7.7 nA (n = 20) that was significantly larger than that in control oocytes of -29 +/- 7.1 nA (P < 0.005). Whole cell conductance, at all tested potentials (-60 to +60 mV), was significantly more in oocytes expressing Rhbg compared with H(2)O-injected oocytes. In Rhbg oocytes, 5 mM NH(4)(+) depolarized the oocyte by 28 +/- 3.6 mV and decreased pH(i) by 0.30 +/- 0.04 at a rate of -20 +/- 2.5 x 10(-4) pH/s. In control oocytes, 5 mM NH(4)(+) depolarized V(m) by only 20 +/- 5.8 mV and pH(i) decreased by 0.07 +/- 0.01 at a rate of -2.7 +/- 0.6 x 10(-4) pH/s. Raising bath [NH(4)(+)] in increments from 1 to 20 mM elicited a proportionally larger decrease in pH(i) (DeltapH(i)), larger depolarization (DeltaV(m)), and a faster rate of pH(i) decrease. Bathing Rhbg oocytes in 20 mM NH(4)(+) induced an inward current of 140 +/- 7 nA that was not significantly different from 178 +/- 23 nA induced in H(2)O-injected (control) oocytes. The rate of pH(i) decrease induced by increasing external [NH(4)(+)] was significantly faster in Rhbg than in H(2)O-injected oocytes at all external NH(4)(+) concentrations. In oocytes expressing Rhbg, net NH(4)(+) influx (estimated from NH(4)(+)-induced H(+) influx) as a function of external [NH(4)(+)] saturated at higher [NH(4)(+)] with a V(max) of approximately 30.8 and an apparent K(m) of 2.3 mM (R(2) = 0.99). These data strongly suggest that Rhbg is a specific electrogenic transporter of NH(4)(+).


Assuntos
Glicoproteínas/fisiologia , Rim/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Compostos de Amônio Quaternário/metabolismo , Animais , Membrana Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Rim/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Metilaminas/farmacologia , Camundongos , Oócitos , Especificidade por Substrato , Transfecção , Xenopus laevis
17.
Am J Physiol Gastrointest Liver Physiol ; 288(4): G736-44, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15576627

RESUMO

The mammalian esophagus has the capacity to secrete a HCO(3)(-) and mucin-rich fluid in the esophageal lumen. These secretions originate from the submucosal glands (SMG) and can contribute to esophageal protection against refluxed gastric acid. The cellular mechanisms by which glandular cells achieve these secretions are largely unknown. To study this phenomenon, we used the pH-stat technique to measure luminal alkali secretion in an isolated, perfused pig esophagus preparation. Immunohistochemistry was used to localize receptors and transporters involved in HCO(3)(-) transport. The SMG-bearing esophagus was found to have significant basal alkali secretion, predominantly HCO(3)(-), which averaged 0.21 +/- 0.04 microeq.h(-1).cm(-2). This basal secretion was doubled when stimulated by carbachol but abolished by HCO(3)(-) or Cl(-) removal. Basal- and carbachol-stimulated secretions were also blocked by serosal application of atropine, pirenzipine, DIDS, methazolamide, and ethoxzolamide. The membrane-impermeable carbonic anhydrase inhibitor benzolamide, applied to the serosal bath, partially inhibited basal HCO(3)(-) secretion and blocked the stimulation by carbachol. Immunohistochemistry using antibodies to M(1) cholinergic receptor or carbonic anhydrase-II enzyme showed intense labeling of duct cells and serous demilunes but no labeling of mucous cells. Labeling with an antibody to Na(+)-(HCO(3)(-))(n) (rat kidney NBC) was positive in ducts and serous cells, whereas labeling for Cl(-)/HCO(3)(-) exchanger (AE2) was positive in duct cells but less pronounced in serous cells. These data indicate that duct cells and serous demilunes of SMG play a role in HCO(3)(-) secretion, a process that involves M(1) cholinergic receptor stimulation. HCO(3)(-) transport in these cells is dependent on cytosolic and serosal membrane-bound carbonic anhydrase. HCO(3)(-) secretion is also dependent on serosal Cl(-) and is mediated by DIDS-sensitive transporters, possibly NBC and AE2.


Assuntos
Bicarbonatos/metabolismo , Esôfago/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Proteínas de Transporte de Ânions/antagonistas & inibidores , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Anidrases Carbônicas/metabolismo , Cloretos/metabolismo , Agonistas Colinérgicos/farmacologia , Esôfago/efeitos dos fármacos , Técnicas In Vitro , Mucosa , Receptor Muscarínico M1/metabolismo , Membrana Serosa/metabolismo , Suínos
18.
Am J Physiol Gastrointest Liver Physiol ; 283(4): G932-7, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12223353

RESUMO

In vivo human esophageal epithelial cells are regularly exposed to hyposmolal stress. This stress, however, only becomes destructive when the surface epithelial cell (barrier) layers are breached and there is contact of the hyposmolal solution with the basolateral cell membranes. The present investigation was designed to examine the effects of hyposmolal stress in the latter circumstance using as a model for human esophageal epithelial cells the noncancer-derived HET-1A cell line. Cell volume and the response to hyposmolal stress in suspensions of HET-1A cells were determined by cell passage through a Coulter Counter Multisizer II. HET-1A cells behaved as osmometers over the range of 280 to 118 mosmol/kg H(2)O with rapid increases in cell volume < or = 15-20% above baseline. Following swelling, the cells exhibited regulatory volume decrease (RVD), restoring baseline volume within 30 min, despite continued hyposmolal stress. With the use of pharmacologic agents and ion substitutions, RVD appeared to result from rapid activation of parallel K(+) and Cl(-) conductance pathways and this was subsequently joined by activation of a KCl cotransporter. Exposure to hyposmolal stress in an acidic environment, pH 6.6, inhibited, but did not abolish, RVD. These data indicate that human esophageal epithelial cells can protect against hyposmolal stress by RVD and that the redundancy in mechanisms may, to some extent, serve as added protection in patients with reflux disease when hyposmolal stress may occur in an acidic environment.


Assuntos
Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/análogos & derivados , Esôfago/citologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Linhagem Celular Transformada , Tamanho Celular , Canais de Cloreto/antagonistas & inibidores , Cloretos/metabolismo , Condutividade Elétrica , Células Epiteliais/citologia , Glicolatos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Soluções Hipotônicas , Concentração Osmolar , Potássio/metabolismo , Bloqueadores dos Canais de Potássio , Simportadores , Cotransportadores de K e Cl-
19.
Am J Physiol Gastrointest Liver Physiol ; 282(4): G663-75, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11897626

RESUMO

We investigated Cl(-) transport pathways in the apical and basolateral membranes of rabbit esophageal epithelial cells (EEC) using conventional and ion-selective microelectrodes. Intact sections of esophageal epithelium were mounted serosal or luminal side up in a modified Ussing chamber, where transepithelial potential difference and transepithelial resistance could be determined. Microelectrodes were used to measure intracellular Cl(-) activity (a), basolateral or apical membrane potentials (V(mBL) or V(mC)), and the voltage divider ratio. When a basal cell was impaled, V(mBL) was -73 +/- 4.3 mV and a(i)(Cl) was 16.4 +/- 2.1 mM, which were similar in presence or absence of bicarbonate. Removal of serosal Cl(-) caused a transient depolarization of V(mBL) and a decrease in a(i)(Cl) of 6.5 +/- 0.9 mM. The depolarization and the rate of decrease of a(i)(Cl) were inhibited by approximately 60% in the presence of the Cl(-)-channel blocker flufenamate. Serosal bumetanide significantly decreased the rate of change of a(i)(Cl) on removal and readdition of serosal Cl(-). When a luminal cell was impaled, V(mC) was -65 +/- 3.6 mV and a was 16.3 +/- 2.2 mM. Removal of luminal Cl(-) depolarized V(mC) and decreased a by only 2.5 +/- 0.9 mM. Subsequent removal of Cl(-) from the serosal bath decreased a(i)(Cl) in the luminal cell by an additional 6.4 +/- 1.0 mM. A plot of V(mBL) measurements vs. log a(i)(Cl)/log a(o)(Cl) (a(o)(Cl) is the activity of Cl(-) in a luminal or serosal bath) yielded a straight line [slope (S) = 67.8 mV/decade of change in a(i)(Cl)/a(o)(Cl)]. In contrast, V(mC) correlated very poorly with log a/a (S = 18.9 mV/decade of change in a/a). These results indicate that 1) in rabbit EEC, a(i)(Cl) is higher than equilibrium across apical and basolateral membranes, and this process is independent of bicarbonate; 2) the basolateral cell membrane possesses a conductive Cl(-) pathway sensitive to flufenamate; and 3) the apical membrane has limited permeability to Cl(-), which is consistent with the limited capacity for transepithelial Cl(-) transport. Transport of Cl(-) at the basolateral membrane is likely the dominant pathway for regulation of intracellular Cl(-).


Assuntos
Cloretos/metabolismo , Esôfago/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/farmacologia , Acetatos/farmacologia , Animais , Bicarbonatos/farmacologia , Transporte Biológico Ativo , Bumetanida/farmacologia , Cálcio/farmacologia , Dióxido de Carbono/farmacologia , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Cloretos/administração & dosagem , Cloretos/análise , AMP Cíclico/farmacologia , Condutividade Elétrica , Impedância Elétrica , Células Epiteliais/metabolismo , Ácido Flufenâmico/farmacologia , Indenos/farmacologia , Potenciais da Membrana , Microeletrodos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA