Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(5): 128, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016200

RESUMO

CONTEXT: As a member of a large family of proteins that together regulate various aspects of cell growth and development, the epidermal growth factor receptor (EGFR) is a validated target for the development of new drugs. Herein, we compiled a library of 62 compounds from the PubChem database with similar pharmacophores as osimertinib, which to our knowledge represents the only drug capable of overcoming EGFR-T790M-mutated NSCLC until date. Subsequently, we launched a docking-based virtual screening campaign against the EGFR kinase with the compiled chemical entities. The virtual screen identified 3 hit candidates (CID_126667097, CID_137660592, and CID_137659061) with lower binding energy/higher affinity (- 8.7 kcal/mol, - 8.6 kcal/mol, and - 8.5 kcal/mol, respectively) than the standard osimertinib (- 8.4 kcal/mol). Molecular dynamics metrics such as RMSD, RMSF, ROG, and intermolecular H-bond were used to substantiate the stability of the promising drug candidates at the binding pocket of EGFR after 100,000 ps production run. Overall, our molecular modeling study portrayed CID_126667097, CID_137660592, and CID_137659061 as lead-like drug candidates that may be further developed for the treatment of EGFR-associated cancer disease. METHODS: Molecular docking was conducted with Autodock Vina. A total of 62 compounds were compiled for the docking screen, which were then downloaded in SMILE format and converted to Protein Data Bank (PDB) format using the Openbabel online server. Finally, Gromacs 2022.3 was used to perform MD simulation to substantiate the stability of the hit candidates.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Humanos , Receptores ErbB/antagonistas & inibidores , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Mutação , Farmacóforo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA