Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712022

RESUMO

Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN). Activity within the DRG, spinal cord, and DCN have all been implicated in mediating allodynia, yet the DCN remains understudied at the cellular, circuit, and functional levels compared to the other two. Here, we show that the gracile nucleus (Gr) of the DCN mediates tactile sensitivity for low-threshold stimuli and contributes to mechanical allodynia during neuropathic pain in mice. We found that the Gr contains local inhibitory interneurons in addition to thalamus-projecting neurons, which are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations resulted in bidirectional changes to tactile sensitivity, but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, silencing Gr projection neurons or activating Gr inhibitory neurons was able to reduce tactile hypersensitivity, and enhancing inhibition was able to ameliorate paw withdrawal signatures of neuropathic pain, like shaking. Collectively, these results suggest that the Gr plays a specific role in mediating hypersensitivity to low-threshold, innocuous mechanical stimuli during neuropathic pain, and that Gr activity contributes to affective, pain-associated phenotypes of mechanical allodynia. Therefore, these brainstem circuits work in tandem with traditional spinal circuits underlying allodynia, resulting in enhanced signaling of tactile stimuli in the brain during neuropathic pain.

2.
Res Sq ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076920

RESUMO

Skin employs interdependent cellular networks to facilitate barrier integrity and host immunity through ill-defined mechanisms. This study demonstrates that manipulation of itch-sensing neurons bearing the Mas-related G protein-coupled receptor A3 (MrgprA3) drives IL-17+ γδ T cell expansion, epidermal thickening, and resistance to the human pathogen Schistosoma mansoni through mechanisms that require myeloid antigen presenting cells (APC). Activated MrgprA3 neurons instruct myeloid APCs to downregulate interleukin 33 (IL-33) and up-regulate TNFα partially through the neuropeptide calcitonin gene related peptide (CGRP). Strikingly, cell-intrinsic deletion of IL-33 in myeloid APC basally alters chromatin accessibility at inflammatory cytokine loci and promotes IL-17/23-dependent epidermal thickening, keratinocyte hyperplasia, and resistance to helminth infection. Our findings reveal a previously undescribed mechanism of intercellular cross-talk wherein "itch" neuron activation reshapes myeloid cytokine expression patterns to alter skin composition for cutaneous immunity against invasive pathogens.

3.
Elife ; 122023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108811

RESUMO

Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in the mouse genome in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this 'privileged' repertoire. Our experiments identify early transcription as a potential 'epigenetic' contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Camundongos , Receptores Odorantes/genética , Epigenômica , Alelos , Epigênese Genética
4.
Neuron ; 111(18): 2811-2830.e8, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37442132

RESUMO

Ongoing pain is driven by the activation and modulation of pain-sensing neurons, affecting physiology, motor function, and motivation to engage in certain behaviors. The complexity of the pain state has evaded a comprehensive definition, especially in non-verbal animals. Here, in mice, we used site-specific electrophysiology to define key time points corresponding to peripheral sensitivity in acute paw inflammation and chronic knee pain models. Using supervised and unsupervised machine learning tools, we uncovered sensory-evoked coping postures unique to each model. Through 3D pose analytics, we identified movement sequences that robustly represent different pain states and found that commonly used analgesics do not return an animal's behavior to a pre-injury state. Instead, these analgesics induce a novel set of spontaneous behaviors that are maintained even after resolution of evoked pain behaviors. Together, these findings reveal previously unidentified neuroethological signatures of pain and analgesia at heightened pain states and during recovery.


Assuntos
Analgesia , Dor , Camundongos , Animais , Analgésicos , Manejo da Dor , Neurônios , Nociceptividade
5.
bioRxiv ; 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37293031

RESUMO

Social grouping increases survival in many species, including humans1,2. By contrast, social isolation generates an aversive state (loneliness) that motivates social seeking and heightens social interaction upon reunion3-5. The observed rebound in social interaction triggered by isolation suggests a homeostatic process underlying the control of social drive, similar to that observed for physiological needs such as hunger, thirst or sleep3,6. In this study, we assessed social responses in multiple mouse strains and identified the FVB/NJ line as exquisitely sensitive to social isolation. Using FVB/NJ mice, we uncovered two previously uncharacterized neuronal populations in the hypothalamic preoptic nucleus that are activated during social isolation and social rebound and that orchestrate the behavior display of social need and social satiety, respectively. We identified direct connectivity between these two populations of opposite function and with brain areas associated with social behavior, emotional state, reward, and physiological needs, and showed that animals require touch to assess the presence of others and fulfill their social need, thus revealing a brain-wide neural system underlying social homeostasis. These findings offer mechanistic insight into the nature and function of circuits controlling instinctive social need and for the understanding of healthy and diseased brain states associated with social context.

6.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36993168

RESUMO

Olfactory receptor (OR) choice represents an example of genetically hardwired stochasticity, where every olfactory neuron expresses one out of ~2000 OR alleles in a probabilistic, yet stereotypic fashion. Here, we propose that topographic restrictions in OR expression are established in neuronal progenitors by two opposing forces: polygenic transcription and genomic silencing, both of which are influenced by dorsoventral gradients of transcription factors NFIA, B, and X. Polygenic transcription of OR genes may define spatially constrained OR repertoires, among which one OR allele is selected for singular expression later in development. Heterochromatin assembly and genomic compartmentalization of OR alleles also vary across the axes of the olfactory epithelium and may preferentially eliminate ectopically expressed ORs with more dorsal expression destinations from this "privileged" repertoire. Our experiments identify early transcription as a potential "epigenetic" contributor to future developmental patterning and reveal how two spatially responsive probabilistic processes may act in concert to establish deterministic, precise, and reproducible territories of stochastic gene expression.

7.
Cell ; 186(3): 577-590.e16, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693373

RESUMO

Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice. Here, we study the social relevance of Mrgprb4-lineage neurons and reveal that these neurons are required for sexual receptivity and sufficient to induce dopamine release in the brain. Even in social isolation, optogenetic stimulation of Mrgprb4-lineage neurons through the back skin is sufficient to induce a conditioned place preference and a striking dorsiflexion resembling the lordotic copulatory posture. In the absence of Mrgprb4-lineage neurons, female mice no longer find male mounts rewarding: sexual receptivity is supplanted by aggression and a coincident decline in dopamine release in the nucleus accumbens. Together, these findings establish that Mrgprb4-lineage neurons initiate a skin-to-brain circuit encoding the rewarding quality of social touch.


Assuntos
Dopamina , Tato , Camundongos , Masculino , Feminino , Animais , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo , Recompensa , Neurônios Dopaminérgicos/metabolismo , Optogenética , Receptores Acoplados a Proteínas G/metabolismo
8.
Neuromethods ; 178: 441-456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783537

RESUMO

Objectively measuring and interpreting an animal's sensory experience remains a challenging task. This is particularly true when using preclinical rodent models to study pain mechanisms and screen for potential new pain treatment reagents. How to determine their pain states in a precise and unbiased manner is a hurdle that the field will need to overcome. Here, we describe our efforts to measure mouse somatosensory reflexive behaviors with greatly improved precision by high-speed video imaging. We describe how coupling sub-second ethograms of reflexive behaviors with a statistical reduction method and supervised machine learning can be used to create a more objective quantitative mouse "pain scale." Our goal is to provide the readers with a protocol of how to integrate some of the new tools described here with currently used mechanical somatosensory assays, while discussing the advantages and limitations of this new approach.

9.
Curr Opin Neurobiol ; 76: 102598, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780688

RESUMO

With symptoms such as spontaneous pain and pathologically heightened sensitivity to stimuli, chronic pain accounts for about 20% of physician visits and up to 2/3 of patients are dissatisfied with current treatments. Much of our knowledge on pain processing and analgesics has emerged from behavioral studies performed on animals presenting the same symptoms under pathological conditions. While humans can verbally describe their pain, studies on rodents have relied on behavioral assays providing non-exhaustive characterization or altering animals' original sensitivity through repetitive stimulations. The emergence of what we term "next-generation behavioral sequencing" is now permitting us to quantitatively describe behavioral features on millisecond to minutes long timescales that lie beyond easy detection with the unaided eye. Here, we summarize emerging videography and computational based behavioral approaches that have the potential to significantly improve pain research.


Assuntos
Dor Crônica , Dor , Analgésicos/uso terapêutico , Animais , Dor Crônica/tratamento farmacológico , Humanos
11.
Curr Opin Neurobiol ; 73: 102527, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35453001

RESUMO

Social touch-the affiliative skin-to-skin contact between individuals-can rapidly evoke emotions of comfort, pleasure, or calm, and is essential for mental and physical well-being. Physical isolation from social support can be devastating. During the COVID-19 pandemic, we observed a global increase in suicidal ideation, anxiety, domestic violence, and worsening of pre-existing physical conditions, alerting society to our need to understand the neurobiology of social touch and how it promotes normal health. Gaining a mechanistic understanding of how sensory neuron stimulation induces pleasure, calm, and analgesia may reveal untapped therapeutic targets in the periphery for treatment of anxiety and depression, as well as social disorders and traumas in which social touch becomes aversive. Bridging the gap between stimulation in the skin and positive affect in the brain-especially during naturally occurring social touch behaviors-remains a challenge to the field. However, with advances in mouse genetics, behavioral quantification, and brain imaging approaches to measure neuronal firing and neurochemical release, completing this mechanistic picture may be on the horizon. Here, we summarize some exciting new findings about social touch in mammals, emphasizing both the peripheral and central nervous systems, with attempts to bridge the gap between external stimulation and internal representations in the brain.


Assuntos
Encéfalo , Prazer , Comportamento Social , Tato , Animais , Encéfalo/fisiologia , Humanos , Camundongos , Tato/fisiologia
12.
Neuron ; 110(5): 739-741, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35240061

RESUMO

In this issue of Neuron, Liu et al. (2022) shed light on the neural circuits supporting pain- and anxiety-induced elevated breathing rhythms. They reveal PBL core-Oprm1 neurons projecting onto the CeA and shell-Oprm1 neurons projecting onto the preBötC as differential regulators of these behaviors.


Assuntos
Respiração , Centro Respiratório , Tronco Encefálico , Humanos , Neurônios/fisiologia , Dor/metabolismo , Centro Respiratório/fisiologia
13.
Sci Adv ; 8(7): eabk2425, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171664

RESUMO

Parental history of opioid exposure is seldom considered when prescribing opioids for pain relief. To explore whether parental opioid exposure may affect sensitivity to morphine in offspring, we developed a "rat pain scale" with high-speed imaging, machine learning, and mathematical modeling in a multigenerational model of paternal morphine self-administration. We find that the most commonly used tool to measure mechanical sensitivity in rodents, the von Frey hair, is not painful in rats during baseline conditions. We also find that male progeny of morphine-treated sires had no baseline changes in mechanical pain sensitivity but were more sensitive to the pain-relieving effects of morphine. Using RNA sequencing across pain-relevant brain regions, we identify gene expression changes within the regulator of G protein signaling family of proteins that may underlie this multigenerational phenotype. Together, this rat pain scale revealed that paternal opioid exposure increases sensitivity to morphine's pain-relieving effects in male offspring.


Assuntos
Analgésicos Opioides , Morfina , Analgésicos Opioides/efeitos adversos , Animais , Masculino , Morfina/efeitos adversos , Dor/tratamento farmacológico , Dor/metabolismo , Ratos , Autoadministração
14.
STAR Protoc ; 2(1): 100322, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33598658

RESUMO

Mouse models are essential for studying pain neurobiology and testing pain therapeutics. The reliance on assays that only measure the presence, absence, or frequency of a reflex have limited the reliability of preclinical pain studies. Our high-speed videography protocol overcomes this by projecting the discrete sub-second kinematic behavioral features induced by hind paw stimulation onto a "mouse pain scale." This provides a more objective and robust pain measurement in mice by quantifying the quality of the stimulus-induced hind paw reflex. For complete details on the use and execution of this protocol, please refer to Abdus-Saboor et al. (2019).


Assuntos
Medição da Dor , Dor/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos
15.
Neurosci Lett ; 748: 135689, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33582191

RESUMO

Mas-related G coupled receptors (Mrgprs) are a superfamily of receptors expressed in sensory neurons that are known to transmit somatic sensations from the skin to the central nervous system. Interestingly, Mrgprs have recently been implicated in sensory and motor functions of mucosal-associated neuronal circuits. The gastrointestinal and pulmonary tracts are constantly exposed to noxious stimuli. Therefore, it is likely that neuronal Mrgpr signaling pathways in mucosal tissues, akin to their family members expressed in the skin, might relay messages that alert the host when mucosal tissues are affected by damaging signals. Further, Mrgprs have been proposed to mediate the cross-talk between sensory neurons and immune cells that promotes host-protective functions at barrier sites. Although the mechanisms by which Mrgprs are activated in mucosal tissues are not completely understood, these exciting studies implicate Mrgprs as potential therapeutic targets for conditions affecting the intestinal and airway mucosa. This review will highlight the central role of Mrgpr signaling pathways in the regulation of homeostasis at mucosal tissues.


Assuntos
Gânglios Espinais/metabolismo , Mucosa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Humanos , Prurido/metabolismo , Transdução de Sinais/fisiologia
16.
Elife ; 92020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32758355

RESUMO

Objective and automatic measurement of pain in mice remains a barrier for discovery in neuroscience. Here, we capture paw kinematics during pain behavior in mice with high-speed videography and automated paw tracking with machine and deep learning approaches. Our statistical software platform, PAWS (Pain Assessment at Withdrawal Speeds), uses a univariate projection of paw position over time to automatically quantify seven behavioral features that are combined into a single, univariate pain score. Automated paw tracking combined with PAWS reveals a behaviorally divergent mouse strain that displays hypersensitivity to mechanical stimuli. To demonstrate the efficacy of PAWS for detecting spinally versus centrally mediated behavioral responses, we chemogenetically activated nociceptive neurons in the amygdala, which further separated the pain-related behavioral features and the resulting pain score. Taken together, this automated pain quantification approach will increase objectivity in collecting rigorous behavioral data, and it is compatible with other neural circuit dissection tools for determining the mouse pain state.


Assuntos
Automação Laboratorial/instrumentação , Medição da Dor/métodos , Animais , Feminino , Masculino , Camundongos , Fatores de Tempo
18.
Sci Rep ; 10(1): 2759, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066827

RESUMO

Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain.


Assuntos
Polpa Dentária/fisiopatologia , Hiperalgesia/diagnóstico , Proteínas do Tecido Nervoso/genética , Medição da Dor/métodos , Dor/diagnóstico , Traumatismos Dentários/diagnóstico , Animais , Comportamento Animal , Polpa Dentária/lesões , Polpa Dentária/inervação , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Dor/genética , Dor/fisiopatologia , Índice de Gravidade de Doença , Traumatismos Dentários/genética , Traumatismos Dentários/fisiopatologia , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia
19.
Curr Psychiatry Rep ; 21(12): 134, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31807945

RESUMO

PURPOSE OF REVIEW: This review aims to summarize the current body of behavioral, physiological, and molecular knowledge concerning tactile sensitivity in autism spectrum disorder (ASD), with a focus on recent studies utilizing rodent models. RECENT FINDINGS: Mice with mutations in the ASD-related genes, Shank3, Fmr1, UBE3A, and Mecp2, display tactile abnormalities. Some of these abnormalities appear to be caused by mutation-related changes in the PNS, as opposed to changes in the processing of touch stimuli in the CNS, as previously thought. There is also growing evidence suggesting that peripheral mechanisms may contribute to some of the core symptoms and common comorbidities of ASD. Researchers are therefore beginning to assess the therapeutic potential of targeting the PNS in treating some of the core symptoms of ASD. Sensory abnormalities are common in rodent models of ASD. There is growing evidence that sensory hypersensitivity, especially tactile sensitivity, may contribute to social deficits and other autism-related behaviors.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Pesquisa Biomédica/tendências , Tato , Animais , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Modelos Animais de Doenças , Humanos , Fenótipo , Tato/genética
20.
Front Neurosci ; 13: 1009, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607850

RESUMO

Voltage-gated calcium channels (VGCCs) are important mediators of pain hypersensitivity during inflammatory states, but their role in sensory nerve growth remains underexplored. Here, we assess the role of the N-type calcium channel Cav2.2 in the complete Freund's adjuvant (CFA) model of inflammatory pain. We demonstrate with in situ hybridization and immunoblotting, an increase in Cav2.2 expression after hind paw CFA injection in sensory neurons that respond to thermal stimuli, but not in two different mechanosensitive neuronal populations. Further, Cav2.2 upregulation post-CFA correlates with thermal but not mechanical hyperalgesia in behaving mice, and this hypersensitivity is blocked with a specific Cav2.2 inhibitor. Voltage clamp recordings reveal a significant increase in Cav2.2 currents post-CFA, while current clamp analyses demonstrate a significant increase in action potential frequency. Moreover, CFA-induced sensory nerve growth, which involves the extracellular signal-related kinase (ERK1/2) signaling pathway and likely contributes to inflammation-induced hyperalgesia, was blocked with the Cav2.2 inhibitor. Together, this work uncovers a role for Cav2.2 during inflammation, demonstrating that VGCC activity can promote thermal hyperalgesia through both changes in firing rates of sensory neurons as well as promotion of new neurite outgrowth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA